Skip to main content
Log in

On the Bardina’s Model in the Whole Space

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the Bardina’s model for turbulent incompressible flows in the whole space with a cut-off frequency of order \(\alpha ^{-1} >0\). We show that for any \(\alpha >0\) fixed, the model has a unique regular solution defined for all \(t \in [0, \infty [\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, N.A., Stolz, S.: Deconvolution methods for subgrid-scale approximation in large eddy simulation. In: Geurts, B. (ed.) Modern Simulation Strategies for Turbulent Flow. R.T. Edwards, Flourtown (2001)

    Google Scholar 

  2. Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid scale models for large eddy simulation. AIAA Paper 80-1357 (1980)

  3. Berselli, L.-C., Galdi, G.-P., Iliescu, T., Layton, W.-J.: Mathematical analysis for the rational large eddy simulation model. Math. Models Methods Appl. Sci. 12(8), 1131–1152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berselli, L.C., Iliescu, T., Layton, W.J.: Mathematics of Large Eddy Simulation of Turbulent Flows. Scientific Computation. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Berselli, L.C., Lewandowski, R.: Convergence of regular solutions of Bardina’s model to solutions of the Navier–Stokes equations (2018) (in progress)

  6. Brézis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Théorie et applications. [Theory and applications]. Masson, Paris (1983)

  7. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cao, C., Holm, D.D., Titi, E.S.: On the Clark-\(\alpha \) model of turbulence: global regularity and long-time dynamics. J. Turbul. 6, 11 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cao, Y., Lunasin, E.M., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chow, F.-K., De Wekker, S.-F., Snyder, B. (eds.): Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Springer, Berlin (2013)

    Google Scholar 

  11. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galdi, G.-P.: An introduction to the Navier–Stokes initial-boundary value problem. In: Galdi, G.P., et al. (eds.) Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, pp. 1–70. Birkhäuser, Basel (2000)

    Google Scholar 

  14. Galdi, G.-P., Simader, C.-G.: Existence, uniqueness and \(L^q\)-estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112(4), 291–318 (1990)

    Article  MATH  Google Scholar 

  15. Gilbarg, D., Trudinger, N.-S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Reprint of the (1998) edition. Springer, Berlin (2001)

    MATH  Google Scholar 

  16. Ilyin, A.-A., Lunasin, E.-M., Titi, E.-S.: A modified-Leray-\(\alpha \) subgrid scale model of turbulence. Nonlinearity 19(4), 879–897 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Layton, W., Lewandowski, R.: A simple and stable scale-similarity model for large eddy simulation: energy balance and existence of weak solutions. Appl. Math. Lett. 16(8), 1205–1209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Layton, W., Lewandowski, R.: On a well-posed turbulence model. Discrete Contin. Dyn. Syst. Ser. B 6(1), 111–128 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lewandowski, R.: Navier–Stokes equations in the whole space with an eddy viscosity. Technical report. arXiv:1705.11043 (2017)

  21. Oseen, C.W.: Sur les formules de Green généralisées qui se présentent dans l’hydrodynamique et sur quelquesunes de leurs applications. Acta Math. 34(1), 205–284 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oseen, C.-W.: Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlagsgesellschaft m. b. h, Leipzig (1927)

    MATH  Google Scholar 

  23. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Scientific Computation, 3rd edn. Springer, Berlin. An introduction, Translated from the 1998 French original. With forewords by Marcel Lesieur and Massimo Germano, With a foreword by Charles Meneveau (2006)

  24. Solonnikov, V.A.: Estimates for solutions of a non-stationary linearized system of Navier–Stokes equations. Trudy Mat. Inst. Steklov. 70, 213–317 (1964)

    MathSciNet  Google Scholar 

  25. Stein, E.-M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  26. Stolz, S., Adams, N.A., Kleiser, L.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13(4), 997–1015 (2001)

    Article  ADS  MATH  Google Scholar 

  27. Tao, T.: Finite time blowup for an averaged three-dimensional Navier–Stokes equation. J. Am. Math. Soc. 29(3), 601–674 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence (2001)

    Book  Google Scholar 

Download references

Acknowledgements

The research that led to the present paper was partially supported by a grant of the group GNAMPA of INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Lewandowski.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G.P. Galdi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewandowski, R., Berselli, L.C. On the Bardina’s Model in the Whole Space. J. Math. Fluid Mech. 20, 1335–1351 (2018). https://doi.org/10.1007/s00021-018-0369-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0369-2

Mathematics Subject Classification

Keywords

Navigation