Skip to main content
Log in

Stability of Bifurcating Stationary Solutions of the Artificial Compressible System

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The artificial compressible system gives a compressible approximation of the incompressible Navier–Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number \(\epsilon \) which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small \(\epsilon \). In general, the range of \(\epsilon \) shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of \(\epsilon \) can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Ordinary differential equations. An introduction to nonlinear analysis. Translated from the German by Gerhard Metzen, De Gruyter Studies in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1990)

  2. Chorin, A.: The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73, 928–931 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chorin, A.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)

    Article  ADS  MATH  Google Scholar 

  4. Chorin, A.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crandall, M., Rabinowitz, P.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donatelli, D.: On the artificial compressibility method for the Navier–Stokes–Fourier system. Q. Appl. Math. 68, 469–485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donatelli, D.: The artificial compressibility approximation for MHD equations in unbounded domain. J. Hyperb. Differ. Equ. 10, 181–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donatelli, D., Marcati, P.: A dispersive approach to the artificial compressibility approximations of the Navier–Stokes equations in 3D. J. Hyperb. Differ. Equ. 3, 575–588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donatelli, D., Marcati, P.: Leray weak solutions of the incompressible Navier–Stokes system on exterior domains via the artificial compressibility method. Indiana Univ. Math. J. 59, 1831–1852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. 1. Springer, New York (1994)

    MATH  Google Scholar 

  11. Kagei, Y., Nishida, T.: On Chorin’s method for stationary solutions of the Oberbeck–Boussinesq equation. J. Math. Fluid Mech. 19, 345–365 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kagei, Y., Nishida, T., Teramoto, Y.: On the spectrum for the artificial compressible system. J. Differ. Equ. 264, 897–928 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kirchgässner, K., Sorger, P.: Branching analysis for the Taylor problem. Q. J. Mech. Appl. Math. 22, 183–209 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. I. Arch. Ration. Mech. Anal. 32, 135–153 (1969)

    Article  MATH  Google Scholar 

  15. Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  MATH  Google Scholar 

  16. Temam, R.: Navier–Stokes equations. Theory and numerical analysis, reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI (2001)

Download references

Acknowledgements

I am deeply grateful to Professor Yoshiyuki Kagei for his constant encouragement. This work was partly supported by JSPS KAKENHI Grant Number 17J04702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuka Teramoto.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Communicated by T. Nishida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teramoto, Y. Stability of Bifurcating Stationary Solutions of the Artificial Compressible System. J. Math. Fluid Mech. 20, 1213–1228 (2018). https://doi.org/10.1007/s00021-018-0364-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0364-7

Keywords

Navigation