Skip to main content
Log in

On Liapunov and Exponential Stability of Rossby–Haurwitz Waves in Invariant Sets of Perturbations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this work, the stability of the Rossby–Haurwitz (RH) waves from the subspace \(\mathbf {H}_{1}\oplus \mathbf {H}_{n}\) is considered (\(n\ge 2\)) where \(\mathbf {H}_{k}\) is the subspace of the homogeneous spherical polynomials of degree k. A conservation law for arbitrary perturbations of the RH wave is derived, and all perturbations are divided into three invariant sets \(\mathbf {M}_{-}^{n}\), \(\mathbf {M}_{0}^{n}\) and \(\mathbf {M} _{+}^{n}\) in which the mean spectral number \(\chi (\psi ^{\prime })\) of any perturbation \(\psi ^{\prime }\) is less than, equal to or greater than \( n(n+1) \), respectively. In turn, the set \(\mathbf {M}_{0}^{n}\) is divided into the invariant subsets \(\mathbf {H}_{n}\) and \(\mathbf {M}_{0}^{n}{\setminus } \mathbf {H}_{n}\). Quotient spaces and norms of the perturbations are introduced, a hyperbolic law for the perturbations belonging to the sets \(\mathbf {M}_{-}^{n}\) and \(\mathbf {M}_{+}^{n}\) is derived, and a geometric interpretation of variations in the kinetic energy of perturbations is given. It is proved that any non-zonal RH wave from \(\mathbf {H}_{1}\oplus \mathbf {H} _{n}\) (\(n\ge 2\)) is Liapunov unstable in the invariant set \(\mathbf {M} _{-}^{n}\). Also, it is shown that a stationary RH wave from \(\mathbf {H} _{1}\oplus \mathbf {H}_{n}\) may be exponentially unstable only in the invariant set \(\mathbf {M}_{0}^{n}{\setminus } \mathbf {H}_{n}\), while any perturbation of the invariant set \(\mathbf {H}_{n}\) conserves its form with time and hence is neutral. Since a Legendre polynomial flow \(aP_{n}(\mu )\) and zonal RH wave \(-\,\omega \mu +aP_{n}(\mu )\) are particular cases of the RH waves of \(\mathbf {H} _{1}\oplus \mathbf {H}_{n}\), the major part of the stability results obtained here is also true for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov, A.A., Witt, A.A., Chaikin, S.E.: Theory of Oscillations. Princeton University Press, Princeton (1949)

    Google Scholar 

  2. Baines, P.G.: The stability of planetary waves on a sphere. J. Fluid Mech. 73(2), 193–213 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Blinova, E.N.: On the determination of the velocity of troughs employing the non-linear vorticity equation. Akad. Nauk SSSR Prikl. Mat. Mech. 10, 669–670 (1946). (in Russian)

    MathSciNet  Google Scholar 

  4. Criminale, W.O., Jackson, T.L., Joslin, R.D.: Theory and Computation in Hydrodynamic Stability. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  5. Dikii, L.A.: Hydrodynamic Stability and Atmosphere Dynamics. Gidrometeoizdat, Leningrad (1976). (in Russian)

    Google Scholar 

  6. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  7. Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern Geometry—Methods and Applications—Part I—The Geometry of Surfaces, Transformation Groups, and Fields. Springer, New York (1992)

    MATH  Google Scholar 

  8. Fjörtoft, R.: Application of integral theorems in deriving criteria of stability of laminar flow and for the baroclinic circular vortex. Geofysiske Publikasjoner utgitt av det Norske Videnskaps-Akademi i Oslo 17, 1–52 (1950)

    MathSciNet  Google Scholar 

  9. Fjörtoft, R.: On the changes in the spectral distribution of kinetic energy for two-dimensional nondivergent flow. Tellus 5(3), 225–230 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gill, A.E.: Atmosphere–Ocean Dynamics. Academic Press, New York (1982)

    Google Scholar 

  11. Haurwitz, B.: The motion of atmospheric disturbances on the spherical earth. J. Mar. Res. 3, 254–267 (1940)

    Google Scholar 

  12. Helgason, S.: Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators and Spherical Functions. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  13. Hoskins, B.J.: Stability of the Rossby–Haurwitz wave. Q. J. R. Meteorol. Soc. 99, 723–745 (1973)

    Article  ADS  Google Scholar 

  14. Hoskins, B.J., Hollingsworth, A.: On the simplest example of the barotropic instability of Rossby wave motion. J. Atmos. Sci. 30(1), 150–153 (1973)

    Article  ADS  Google Scholar 

  15. Karunin, A.B.: On Rossby waves in barotropic atmosphere in the presence of zonal flow. Izv. Atmos. Ocean. Phys. 6(11), 1091–1100 (1970)

    MathSciNet  Google Scholar 

  16. Kuo, H.-L.: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteorol. 6, 105–122 (1949)

    Article  Google Scholar 

  17. Liapunov, A.M.: Stability of Motion. Academic Press, New York (1966)

    Google Scholar 

  18. Lorenz, E.N.: Barotropic instability of Rossby wave motion. J. Atmos. Sci. 29, 258–264 (1972)

    Article  ADS  Google Scholar 

  19. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)

    Book  MATH  Google Scholar 

  20. McIntyre, M.E., Shepherd, T.G.: An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Arnol’d stability theorems. J. Fluid Mech. 181, 527–565 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhäuser, Basel (2013)

    MATH  Google Scholar 

  22. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  23. Petroni, R., Pierini, S., Vulpiani, A.: The double cascade as a necessary mechanism for the instability of steady equivalent-barotropic flows. Nuovo Cimento C 10, 27–36 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  24. Petroni, R., Pierini, S., Vulpiani, A.: Reply to a note by T.G. Shepherd. Nuovo Cimento C 12(2), 271–275 (1989)

    Article  ADS  Google Scholar 

  25. Rayleigh, L.: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. s1–11(1), 57–72 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  26. Richtmyer, R.D.: Principles of Advanced Mathematical Physics, vol. 1 (1978); vol. 2 (1981). Springer, New York (1978)

  27. Rossby, C.-G.: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2, 38–55 (1939)

    Article  Google Scholar 

  28. Shepherd, T.G.: Remarks concerning the double cascade as a necessary mechanism for the instability of steady equivalent-barotropic flows. Il Nuovo Cimento C 11(4), 439–442 (1988)

    Article  ADS  Google Scholar 

  29. Shutyaev, V.P.: Data mastery in a scale of Hilbert spaces for quasilinear evolution problems. Differ. Equ. 34, 382–388 (1998)

    MATH  Google Scholar 

  30. Skiba, Y.N.: On dimension of attractive sets of viscous fluids on a sphere under quasi-periodic forcing. Geophys. Astrophys. Fluid Dyn. 85, 233–242 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  31. Skiba, Y.N.: On the normal mode instability of harmonic waves on a sphere. Geophys. Astrophys. Fluid Dyn. 92(1–2), 115–127 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. Skiba, Y.N., Strelkov, A.Y.: On the normal mode instability of modons and Wu-Verkley waves. Geophys. Astrophys. Fluid Dyn. 93(1–2), 39–54 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. Skiba, Y.N.: Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere. Springer International Publishing AG, Cham (2017)

    Book  MATH  Google Scholar 

  34. Szeptycki, P.: Equations of hydrodynamics on manifold diffeomorphic to the sphere. Bull. Acad. Pol. Sci. Serie Sci. Math. Astr. Phys. 21(4), 341–344 (1973)

    MathSciNet  MATH  Google Scholar 

  35. Thompson, P.D.: A generalized class of exact time-dependent solutions of the vorticity equation for nondivergent barotropic flow. Mon. Weather Rev. 110, 1321–1324 (1982)

    Article  ADS  Google Scholar 

  36. Tung, K.K.: Barotropic instability of zonal flows. J. Atmos. Sci. 38, 308–321 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  37. Zubov, V.I.: Methods of A.M. Lyapunov and Their Application. Noordhoff Ltd., Groningen (1964)

    MATH  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the grant No. 14539 of the National System of Researchers of Mexico (SNI, CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Skiba.

Additional information

Communicated by G. Iooss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skiba, Y.N. On Liapunov and Exponential Stability of Rossby–Haurwitz Waves in Invariant Sets of Perturbations. J. Math. Fluid Mech. 20, 1137–1154 (2018). https://doi.org/10.1007/s00021-017-0359-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-017-0359-9

Keywords

Navigation