Skip to main content
Log in

Estimates of the Modeling Error of the \(\alpha \)-Models of Turbulence in Two and Three Space Dimensions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This report investigates the convergence rate of the weak solutions \(\mathbf{w}^{\alpha }\) of the Leray-\(\alpha \), modified Leray-\(\alpha \), Navier–Stokes-\(\alpha \) and the zeroth ADM turbulence models to a weak solution \(\mathbf{u}\) of the Navier–Stokes equations. It is assumed that this weak solution \(\mathbf{u}\) of the NSE belongs to the space \(L^4(0, T; H^1)\). It is shown that under this regularity condition the error \(\mathbf{u}-\mathbf{w}^{\alpha }\) is \(\mathcal {O}(\alpha )\) in the norms \(L^2(0, T; H^1)\) and \(L^{\infty }(0, T; L^2)\), thus improving related known results. It is also shown that the averaged error \(\overline{\mathbf{u}}-\overline{\mathbf{w}^{\alpha }}\) is higher order, \(\mathcal {O}(\alpha ^{1.5})\), in the same norms, therefore the \(\alpha \)-regularizations considered herein approximate better filtered flow structures than the exact (unfiltered) flow velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler solutions. Commun. Math. Phys. 94, 61–66 (1984)

    Article  ADS  MATH  Google Scholar 

  2. Berselli, L., Catania, D., Lewandowski, R.: Convergence of approximate deconvolution models to the mean magnetohydrodynamics equations: analysis of two models. J. Math. Anal. Appl. 401, 864–880 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berselli, L., Lewandowski, R.: Convergence of approximate deconvolution models to the filtered Navier–Stokes equations. Annales de l’Institut Henri Poincare (C), Non Linear Anal. 29(2), 171–198 (2012)

    Article  ADS  MATH  Google Scholar 

  4. Cao, Y., Lunasin, E.M., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, Y., Titi, E.S.: On the rate of convergence of the two-dimensional \(\alpha \)-models of turbulence to the Navier–Stokes equations. Numer. Funct. Anal. Optim. 30, 1231–1271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, L., Guenther, R.B., Kim, S., Thomann, E.A., Waymire, E.C.: A rate of convergence for the LANS-\(\alpha \) regularization of Navier–Stokes equations. J. Math. Anal. Appl. 348, 637–649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chepyzhov, V.V., Titi, E.S., Vishik, M.I.: On the convergence of solutions of the Leray-\(\alpha \) model to the trajectory attractor of the 3D Navier–Stokes system. J. Discrete Contin. Dyn. Syst. Ser. A 17, 481–500 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Cheskidov, A., Holm, D., Olson, E., Titi, E.: On a Leray-alpha model of turbulence. In Proceedings, Series A, Mathematical, Physical and Engineering Sciences, vol. 461. Royal Society, London, pp. 629–649 (2005)

  9. Cuff, V., Dunca, A., Manica, C., Rebholz, L.: The reduced order NS-\(\alpha \) model for incompressible flow: theory, numerical analysis and benchmark testing. M2AN 49(3), 641–662 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dunca, A., John, V.: Finite element error analysis of space averaged flow fields defined by a differential filter. Math. Models Methods Appl. Sci. 14(4), 603–618 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dunca, A., Lewandowski, R.: Modeling error in approximate deconvolution models. Commun. Math. Sci. 12(4), 757–778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Foias, C., Holm, D., Titi, E.: The Navier–Stokes-alpha model of fluid turbulence. Phys. D 152–153, 505–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foias, C., Holm, D., Titi, E.: The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory. J. Dyn. Differ. Equ. 14, 1–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi, G.P.: An introduction to the Navier–Stokes initial boundary value problem. In: Galdi, G.P., Heywood, J., Rannacher, R. (eds.) Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, vol. 1, pp. 1–98. Birkhauser, Basel (2000)

    Chapter  Google Scholar 

  15. Galvin, K., Rebholz, L., Trenchea, C.: Efficient, unconditionally stable, and optimally accurate FE algorithms for approximate deconvolution models. SIAM J. Numer. Anal. 52(2), 678–707 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Germano, M.: Differential filters for the large eddy numerical simulation of turbulent flows. Phys. Fluids 29, 1755–1757 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Germano, M.: Differential filters of elliptic type. Phys. Fluids 29, 1757–1758 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Morales Hernandez, M., Rebholz, L., Tone, C., Tone, F., Tone, F.: On the stability of the crank–Nicolson–Adams–Bashforth scheme for the 2D Leray-alpha model. Numer. Methods Partial Differ. Equ. 32(4), 1155–1183 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heywood, J.G.: The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ilyin, A., Lunasin, E., Titi, E.: A modified-Leray-\(\alpha \) subgrid scale model of turbulence. Nonlinearity 19, 879–897 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kaya, S., Manica, C., Rebholz, L.: On Crank–Nicolson Adams–Bashforth timestepping for approximate deconvolution models in two dimensions. Appl. Math. Comput. 246, 23–38 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Kaya, S., Manica, C.C.: Convergence analysis of the finite element method for a fundamental model in turbulence. Math. Models Methods Appl. Sci. 22, 1250033 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kolmogorov, A.V.: The local structure of turbulence in incompressible viscous fluids for very large Reynolds number. Dokl. Akad. Nauk. SSR 30, 9–13 (1941)

    MathSciNet  Google Scholar 

  24. Larios, A., Titi, E.: On the higher order global regularity of the inviscid Voigt-regularization three-dimensional hidrodynamic models. Discrete Contin. Dyn. Syst. Ser. B 14(2), 603–627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows. SIAM Publications, Philadelphia. ISBN:978-0-898716-57-3 (2008)

  26. Layton, W., Lewandowski, R.: A simple and stable scale similarity model for large scale eddy simulation: energy balance and existence of weak solutions. Appl. Math. Lett. 16, 1205–1209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Layton, W., Lewandowski, R.: On a well-posed turbulence model. Discrete Contin. Dyn. Syst. Seri. B 6(1), 111–128 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Layton, W., Lewandowski, R.: A high accuracy Leray-deconvolution model of turbulence and its limiting behavior. Anal. Appl. (Singap.) 6(1), 23–49 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Layton, W., Manica, C., Neda, M., Rebholz, L.: Numerical analysis and computational testing of a high-order Leray-deconvolution turbulence model. Numer. Methods Partial Differ. Equ. 24(2), 555–582 (2008)

    Article  MATH  Google Scholar 

  30. Layton, W., Manica, C., Neda, M., Rebholz, L.: Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations. Comput. Methods Appl. Mech. Eng. 199, 916–931 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Leray, J.: Essay sur les mouvements plans d’une liquide visqueux que limitent des parois. J. Math. Pure Appl. Paris Ser. IX 13, 331–418 (1934)

    MATH  Google Scholar 

  32. Leray, J.: Sur les mouvements d’une liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  33. Linshiz, J., Titi, E.S.: On the convergence rate of the Euler-\(\alpha \), inviscid second-grade fluid, model to the Euler equations. J. Stat. Phys. 138(1), 305–332 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Miles, W., Rebholz, L.: An enhanced physics based scheme for the NS-alpha turbulence model. Numer. Methods Partial Differ. Equ. 26, 1530–1555 (2010)

    MATH  Google Scholar 

  35. Mullen, J.S., Fischer, P.F.: Filtering techniques for complex geometry fluid flows. Commun. Numer. Methods Eng. 15, 9–18 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Prodi, G.: Un teorema di unicit‘a per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rebholz, L., Kim, T.-Y., Byon, Young-Li: On an accurate \(\alpha \) model for coarse mesh turbulent channel flow simulation. Appl. Math. Model. 43, 139–154 (2017)

    Article  MathSciNet  Google Scholar 

  38. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Langer, R.E. (ed.), Nonlinear Problems, vol. 9. University of Wisconsin Press, Madison (1963)

  39. Vishik, M.I., Titi, E.S., Chepyzhov, V.V.: Trajectory attractor approximations of the 3D Navier–Stokes system by the Leray-\(\alpha \) model. Russ. Math. Dokladi 71, 91–95 (2005)

    Google Scholar 

  40. Zhou, Y., Hossain, M., Vahala, G.: A critical look at the use of filters in large eddy simulation. Phys. Lett. A 139, 330–332 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Edriss Titi for a helpful communication on the convergence of \(\alpha \)-models of turbulence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argus A. Dunca.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interests.

Additional information

Communicated by G.P. Galdi

This work has been funded by University Politehnica of Bucharest, through the Excellence Research Grants Program, UPB GEX. No. 26/2016, Internal No. MA 52.16.01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunca, A.A. Estimates of the Modeling Error of the \(\alpha \)-Models of Turbulence in Two and Three Space Dimensions. J. Math. Fluid Mech. 20, 1123–1135 (2018). https://doi.org/10.1007/s00021-017-0357-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-017-0357-y

Keywords

Mathematics Subject Classification

Navigation