Skip to main content
Log in

\({\varvec{L}}^{\varvec{q}}\)-Helmholtz Decomposition on Periodic Domains and Applications to Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We prove the existence of the Helmholtz decomposition \( L^q(\Omega _{\mathrm {p}},\mathbb {C}^d)=L_\sigma ^q(\Omega _{\mathrm {p}})\oplus G^q(\Omega _{\mathrm {p}})\) for periodic domains \(\Omega _{\mathrm {p}}\subseteq \mathbb {R}^d\) with respect to a lattice \(L\subseteq \mathbb {R}^d\), i.e. \(\Omega _{\mathrm {p}}=\Omega _{\mathrm {p}}+z\) for all \(z\in L\), and for a suitable range of q depending on the regularity of the boundary. The proof of the Helmholtz decomposition builds upon recent Bloch multiplier theorems due to B. Barth. We give several applications to Stokes operators and Navier–Stokes equations on such domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: Nonlinear elliptic and parabolic problems: a special tribute to the work of Herbert Amann, ch. Bounded Imaginary Powers and \(H^\infty \)-Calculus of the Stokes Operator in Unbounded Domains, pp. 1–15, Birkhäuser Basel, Basel (2005)

  2. Babutzka, J.: \(L^q\)-Helmholtz decomposition and \(L^q\)-spectral theory for the Maxwell operator on periodic domains, Ph.D. thesis, KIT, Karlsruhe (2016)

  3. Barth, B.: The Bloch Transform on \(L^p\)-Spaces, Ph.D. thesis, KIT, Karlsruhe (2013)

  4. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  5. Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift fur Physik 52, 555–600 (1929)

    Article  ADS  MATH  Google Scholar 

  6. Calderón, A.P.: Lebesgue spaces of differentiable functions and distributions. Proc. Symp. Pure Math. 4, 33–49 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dörfler, W., Lechleiter, A., Plum, M., Schneider, G., Wieners, C.: Photonic Crystals: Mathematical Analysis and Numerical Approximation, 1st edn. Birkhäuser Verlag, Basel (2011)

    Book  MATH  Google Scholar 

  8. Edmunds, D.E., Evans, W.D.: Hardy Operators, Function Spaces and Embeddings. Springer Monographs in Mathematics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  9. Farwig, R., Kozono, H., Sohr, H.: An \(L^q\)-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195(1), 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farwig, R., Kozono, H., Sohr, H.: The Helmholtz decomposition in arbitrary unbounded domains—a theory beyond \(L^2\). Proc. Equadiff 11, 77–85 (2005)

    Google Scholar 

  11. Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Archiv der Mathematik 88(3), 239–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev–Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farwig, R., Sohr, H.: Helmholtz decomposition and Stokes resolvent system for aperture domains in \(L^q\)-spaces. Analysis 16, 1–26 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  15. Geng, J.: \(W^{1, p}-\)estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains. Adv. Math. 229(4), 2427–2448 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geissert, M., Heck, H., Hieber, M., Sawada, O.: Weak Neumann implies Stokes. J. Reine Angew. Math. 669, 75–100 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in \(L^r\)-spaces. Math. Z 178, 297–329 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Geissert, M., Kunstmann, P.C.: Weak Neumann implies \(H^\infty \) for Stokes. J. Math. Soc. Jpn. 67(1), 183–193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gopalakrishnan, J., Qiu, W.: Partial expansion of a Lipschitz domain and some applications. Front. Math. China 7(2), 249–272 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haak, B., Kunstmann, P.: On Kato’s method for Navier–Stokes equations. J. Math. Fluid Mech. 11(4), 492–535 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jones, P .W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147(1), 71–88 (1981). (English)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuchment, P.: An overview of periodic elliptic operators, to appear in Bulletin AMS (2016)

  23. Kunstmann,P.C., Weis, L.: Maximal \(L^p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional Calculus. In: Iannelli, M. et al. (ed.) Functional Analytic Methods for Evolution Equations, Springer Lecture Notes 1855, pp. 65–311 (2004)

  24. Lang, J., Mendez, O.: Potential techniques and regularity of boundary value problems in exterior non-smooth domains. Potential Anal. 24(4), 385–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ladyzhenskaya, O .A., Solonnikov, V .A.: Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier–Stokes equations. V. A. Steklova AN SSSR 59, 81–116 (1976)

    MathSciNet  MATH  Google Scholar 

  26. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  27. Maslennikova, V.N., Bogovskii, M.E.: Approximation of potential and solenoidal vector fields. Sibirskii Matematicheskii Zhurnal 24(5), 149–171 (1983)

    MathSciNet  Google Scholar 

  28. Maslennikova, V.N., Bogovskii, M.E.: Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries. Rend. Sem. Mat. Fis. Milano 56, 125–138 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mitrea, Dorina: Sharp \(L^p\)-Hodge decompositions for Lipschitz domains in \(\mathbb{R}^2\). Adv. Differ. Equ. 7(3), 343–364 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Miyakawa, T.: The Helmholtz decomposition of vector fields in some unbounded domains. Math. J. Toyama Univ. 17, 115–149 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Mitrea, Marius, Taylor, Michael: Potential theory on Lipschitz domains in Riemannian manifolds: \(L^P\) Hardy, and Hölder space results. Comm. Anal. Geom. 9(2), 369–421 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2012)

    MATH  Google Scholar 

  33. Shen, Z.: Resolvent estimates in \(L^p\) for the Stokes operator in Lipschitz domains. Arch. Ration. Mech. Anal. 205(2), 395–424 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sobolev, S.L.: The density of finite functions in the space \(L_p^{(m)}(E_n)\). Soviet Math. Dokl. 4, 313–316 (1963)

    Google Scholar 

  35. Smith, W., Stegenga, D.A.: Hölder domains and Poincaré domains. Trans. Am. Math. Soc. 319(1), 67–100 (1990)

    MATH  Google Scholar 

  36. Simader, C.G., Sohr, H.: A New Approach to the Helmholtz Decomposition and the Neumann Problem in \(L^q\)-spaces for Bounded and Exterior Domains. Mathematical problems relating to the Navier–Stokes equation, pp. 1–35. World Scientific Publishing Co., River Edge, NJ (1992)

    MATH  Google Scholar 

  37. Sohr, H., Thäter, G.: Imaginary powers of second order differential operators and \(L^q-\)Helmholtz decomposition in the infinite cylinder. Mathematische Annalen 311, 577–602 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Monographs in harmonic analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Christian Kunstmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Hieber

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via GRK 1294.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babutzka, J., Kunstmann, P.C. \({\varvec{L}}^{\varvec{q}}\)-Helmholtz Decomposition on Periodic Domains and Applications to Navier–Stokes Equations. J. Math. Fluid Mech. 20, 1093–1121 (2018). https://doi.org/10.1007/s00021-017-0356-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-017-0356-z

Navigation