Commutative Algebras Generated by Toeplitz Operators on the Unit Sphere

Abstract

The classical result by Brown and Halmos (J Reine Angew Math 213:8–102, 1964) implies that there is no nontrivial commutative \(C^*\)-algebra generated by Toeplitz operators acting on the Hardy space \(H^2(S^1)\), while there are only two commutative Banach algebras. One of them is generated by Toeplitz operators with analytic symbols, and the other one is generated by Toeplitz operators with conjugate analytic symbols. At the same time there are many nontrivial commutative \(C^*\) and Banach algebras generated by Toeplitz operators acting on the Bergman spaces. In the paper we show that the situation on the multidimensional Hardy space \(H^2(S^{2n-1})\) is drastically different from the one on \(H^2(S^1)\). We represent the Hardy space \(H^2(S^{2n-1})\) as a direct sum of weighted Bergman spaces over \(\mathbb {B}^{n-1}\), and use the already known results for the Bergman space operators to describe a variety of nontrivial commutative \(C^*\) and Banach algebras generated by Toeplitz operators acting on the multidimensional Hardy space \(H^2(S^{2n-1})\).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Akkar, Z.: Zur Spektraltheorie von Toeplitzoperatoren auf dem Hardyraum \(H^2(\mathbb{B}^n)\). Ph. D. dissertation. Universität des Saarlandes (2012)

  2. 2.

    Bauer, W., Herrera, C., Vasilevski, N.: Eigenvalue characterization of radial operators on weighted Bergman spaces over the unit ball. Integral Equ. Oper. Theory 78(2), 271–300 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Bauer, W., Vasilevski, N.: Banach algebras of commuting Toeplitz operators on the unit ball via the quasi-hyperbolic group. Oper. Theory Adv. Appl. 218, 155–175 (2012)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Bauer, W., Vasilevski, N.: Commutative Toeplitz Banach algebras on the ball and quasi-nilpotent group action. Integral Equ. Oper. Theory 72(2), 223–240 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Bauer, W., Vasilevski, N.: On the structure of a commutative Banach algebra generated by Toeplitz operators with quasi-radial quasi-homogeneous symbols. Integral Equ. Oper. Theory 74(2), 199–231 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Bauer, W., Vasilevski, N.: On the structure of commutative Banach algebras generated by Toeplitz operators on the unit ball. Quasi-elliptic case. I: generating subalgebras. J. Funct. Anal. 265, 2956–2990 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Bauer, W., Vasilevski, N.: On the structure of commutative Banach algebras generated by Toeplitz operators on the unit ball. Quasi-elliptic case. II: Gelfand theory. Complex Anal. Oper. Theory 9(3), 593–630 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Brown, A., Halmos, P.R.: Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213, 8–102 (1964)

    MathSciNet  Google Scholar 

  9. 9.

    Gamelin, T.W.: Uniform Algebras. Prentice-Hall Inc., Englewood Cliffs (1969)

    Google Scholar 

  10. 10.

    García, A.: Algebras generated by Toeplitz operators with radial pseudo-homogeneous symbols, Ph. D. dissertation. Cinvestav, Mexico (2017)

  11. 11.

    García, A., Vasilevski, N.: Toeplitz operators on the weighted Bergman space over the two-dimensional unit ball. J. Funct. Spaces 2015, 1–10 (2015). https://doi.org/10.1155/2015/306168

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Grudsky, S., Vasilevski, N.: Bergman–Toeplitz operators: radial component influence. Integral Equ. Oper. Theory 40(1), 16–33 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Korányi, A., Stain, E.M.: \(H^{2}\) spaces of generalized half-planes. Stud. Math. 44, 379–388 (1972)

    Google Scholar 

  14. 14.

    Quiroga-Barranco, R., Vasilevski, N.L.: Commutative algebras of Toeplitz operators on the unit ball I: Bargmann type transforms and spectral representations of Toeplitz operators. Integral Equ. Oper. Theory 59(3), 379–419 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Rudin, W.: Function Theory on the Unit Ball of \(\mathbb{C} ^n\). Springer, Berlin (1980)

    Google Scholar 

  16. 16.

    Sánchez-Nungaray, A., Vasilevski, N.: Commutative algebras of Toeplitz operators on a Siegel domain associated with the nilpotent group of its biholomorphisms. Oper. Theory Adv. Appl. 258, 275–300 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Schmidt, R.: Über divergente Folgen und lineare Mittelbildungen. Math. Z. 22, 89–152 (1925)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Vági, S.: \(H^{2}\) spaces of generalized half-planes. Stud. Math. 61, 127–136 (1977)

    MATH  Google Scholar 

  19. 19.

    Vasilevski, N.L.: Toeplitz operators on the Bergman spaces: inside-the-domain effects. Contemp. Math. 289, 79–146 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Vasilevski, N.L.: Bergman space structure, commutative algebras of Toeplitz operators and hyperbolic geometry. Integral Equ. Oper. Theory 46, 235–251 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Vasilevski, N.L.: Commutative Algebras of Toeplitz Operators on the Bergman Space. Operator Theory: Advances and Applications, vol. 185. Birkhäuser Verlag, Basel-Boston-Berlin (2008)

  22. 22.

    Vasilevski, N.: Parabolic quasi-radial quasi-homogeneous symbols and commutative algebras of Toeplitz operators. Oper. Theory Adv. Appl. 202, 553–568 (2010)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Vasilevski, N.: Quasi-radial quasi-homogeneous symbols and commutative Banach algebras of Toeplitz operators. Integral Equ. Oper. Theory 66(1), 141–152 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Vasilevski, N.: On Toeplitz operators with quasi-radial and pseudo-homogeneous symbols. Harmon. Anal. Partial Differ. Equ. Banach Spaces Oper. Theory 2, 401–417 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikolai Vasilevski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by CONACYT Project 238630, México.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loaiza, M., Vasilevski, N. Commutative Algebras Generated by Toeplitz Operators on the Unit Sphere. Integr. Equ. Oper. Theory 92, 25 (2020). https://doi.org/10.1007/s00020-020-02580-x

Download citation

Keywords

  • Hardy space
  • Toeplitz operators
  • commutative algebras