Self-Adjointness, \(\varvec{m}\)-Accretivity, and Separability for Perturbations of Laplacian and Bi-Laplacian on Riemannian Manifolds

  • Ognjen Milatovic


Let \(\Delta _{A}\) and \(\Delta ^2_{A}\) be the magnetic Laplacian and magnetic bi-Laplacian (with a smooth magnetic field A) on a geodesically complete Riemannian manifold M and let V be a real-valued function on M. We give a sufficient condition for the essential self-adjointness of \(\Delta _{A}+V\) on the space of smooth compactly supported functions on M. Additionally, we provide sufficient conditions for the m-accretivity of the operator sum \(T^{(p)}_{\Delta _{A}}+T^{(p)}_{V}\) and the self-adjointness of \(T^{(2)}_{\Delta ^2_{A}}+T^{(2)}_{V}\), where \(T^{(p)}_{\Delta _{A}}\), \(T^{(p)}_{\Delta ^2_{A}}\), \(T^{(p)}_{V}\) are the “maximal” operators in \(L^p(M)\), \(1<p<\infty \), corresponding to \(\Delta _{A}\), \(\Delta ^2_{A}\), and V. As a consequence of these results, we obtain the separation property for \(\Delta _{A}+V\) in \(L^{p}(M)\) and the same property for \(\Delta ^2_{A}+V\) in \(L^2(M)\). In some results pertaining to \(\Delta ^2_{A}+V\), we assume that the Ricci curvature of M is bounded from below by a (possibly unbounded) non-positive function depending on the distance from a reference point.


Bi-Laplacian Laplacian m-accretivity Perturbation Riemannian manifold Self-adjointness Separation 

Mathematics Subject Classification

35P05 47B25 58J50 


  1. 1.
    Atia, H.A., Alsaedi, R.S., Ramady, A.: Separation of bi-harmonic differential operators on Riemannian manifolds. Forum Math. 26, 953–966 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bandara, L., Saratchandran, H.: Essential self-adjointness of powers of first-order differential operators on non-compact manifolds with low-regularity metrics. J. Funct. Anal. 273, 3719–3758 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bianchi, D., Setti, A.G.: Laplacian cut-offs, porous and fast diffusion on manifolds and other applications. Calc. Var. (2018). zbMATHGoogle Scholar
  4. 4.
    Boimatov, KKh: Separability theorems, weighted spaces and their applications. Trudy Mat. Inst. Steklov. 170, 37–76 (1984). (Russian)MathSciNetGoogle Scholar
  5. 5.
    Boimatov, KKh: Coercive estimates and separation for second order elliptic differential equations. Soviet Math. Dokl. 38, 157–160 (1989)MathSciNetGoogle Scholar
  6. 6.
    Braverman, M., Cecchini, S.: Spectral theory of von Neumann algebra valued differential operators over non-compact manifolds. J. Noncommut. Geom. 10, 1589–1609 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Braverman, M., Milatovic, O., Shubin, M.: Essential self-adjointness of Schrödinger type operators on manifolds. Rus. Math. Surveys 57, 641–692 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cordes, H.O.: Self-adjointness of powers of elliptic operators on non-compact manifolds. Math. Ann. 195, 257–272 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics. Springer, Berlin (1987)zbMATHGoogle Scholar
  10. 10.
    Eichhorn, J.: Global Analysis on Open Manifolds. Nova Science Publishers, New York (2007)zbMATHGoogle Scholar
  11. 11.
    Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics 194. Springer, Berlin (2000)Google Scholar
  12. 12.
    Everitt, W.N., Giertz, M.: Inequalities and separation for Schrödinger type operators in \(L^2(\mathbb{R}^n)\). Proc. R. Soc. Edinb. Sect. A 79, 257–265 (1977)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gaffney, M.: A special Stokes’s theorem for complete Riemannian manifolds. Ann. Math. 60, 140–145 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics 47. American Mathematical Society, Providence, RI; International Press, Boston, MA (2009)Google Scholar
  15. 15.
    Grummt, R., Kolb, M.: Essential selfadjointness of singular magnetic Schrödinger operators on Riemannian manifolds. J. Math. Anal. Appl. 388, 480–489 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Güneysu, B.: Kato’s inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds. Proc. Am. Math. Soc. 142, 1289–1300 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Güneysu, B.: Sequences of Laplacian cut-off functions. J. Geom. Anal. 26, 171–184 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Güneysu, B.: Covariant Schrödinger Semigroups on Riemannian Manifolds. Operator Theory: Advances and Applications 264. Birkhäuser, Basel (2017)CrossRefzbMATHGoogle Scholar
  19. 19.
    Güneysu, B.: The BMS-conjecture. Ulmer Seminare. Preprint: arXiv:1709.07463 (to appear)
  20. 20.
    Güneysu, B., Post, O.: Path integrals and the essential self-adjointness of differential operators on noncompact manifolds. Math. Z. 275, 331–348 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1980)zbMATHGoogle Scholar
  22. 22.
    Milatovic, O.: On \(m\)-accretivity of perturbed Bochner Laplacian in \(L^p\)-spaces on Riemannian manifolds. Integral Equ. Op. Theory 68, 243–254 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Milatovic, O.: Separation property for Schrödinger operators in \(L^p\)-spaces on non-compact manifolds. Complex Var. Elliptic Equ. 58, 853–864 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Milatovic, O.: Self-adjointness of perturbed biharmonic operators on Riemannian manifolds. Math. Nachr. 290, 2948–2960 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nguyen, X.D.: Essential self-adjointness and self-adjointness for even order elliptic operators. Proc. R. Soc. Edinb. Sect. A 93, 161–179 (1982)CrossRefzbMATHGoogle Scholar
  26. 26.
    Okazawa, N.: On the perturbation of linear operators in Banach and Hilbert spaces. J. Math. Soc. Jpn. 34, 677–701 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Okazawa, N.: An \(L^{p}\) theory for Schrödinger operators with nonnegative potentials. J. Math. Soc. Jpn. 36, 675–688 (1984)CrossRefzbMATHGoogle Scholar
  28. 28.
    Prandi, D., Rizzi, L., Seri, M.: Quantum confinement on non-complete Riemannian manifolds. J. Spectr. Theory. Preprint: arxiv:1609.01724 (to appear)
  29. 29.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of North FloridaJacksonvilleUSA

Personalised recommendations