Skip to main content
Log in

Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In mammalian cells, the bulky DNA adducts caused by ultraviolet radiation are mainly repaired via the nucleotide excision repair (NER) pathway; some defects in this pathway lead to a genetic disorder known as xeroderma pigmentosum (XP). Ribosomal protein S3 (rpS3), a constituent of the 40S ribosomal subunit, is a multi-functional protein with various extra-ribosomal functions, including a role in the cellular stress response and DNA repair-related activities. We report that rpS3 associates with transcription factor IIH (TFIIH) via an interaction with the xeroderma pigmentosum complementation group D (XPD) protein and complements its function in the NER pathway. For optimal repair of UV-induced duplex DNA lesions, the strong helicase activity of the TFIIH complex is required for unwinding damaged DNA around the lesion. Here, we show that XP-D cells overexpressing rpS3 showed markedly increased resistance to UV radiation through XPD and rpS3 interaction. Additionally, the knockdown of rpS3 caused reduced NER efficiency in HeLa cells and the overexpression of rpS3 partially restored helicase activity of the TFIIH complex of XP-D cells in vitro. We also present data suggesting that rpS3 is involved in post-excision processing in NER, assisting TFIIH in expediting the repair process by increasing its turnover rate when DNA is damaged. We propose that rpS3 is an accessory protein of the NER pathway and its recruitment to the repair machinery augments repair efficiency upon UV damage by enhancing XPD helicase function and increasing its turnover rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CPD:

Cyclobutane pyrimidine dimer

NER:

Nucleotide excision repair

rpS3:

Ribosomal protein S3

TFIIH:

Transcription factor IIH

XP:

Xeroderma pigmentosum

References

  1. Coin F, Oksenych V, Egly J-M (2007) Distinct roles for the XPB/p52 and XPD/p44 Subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol Cell 26(2):245–256. https://doi.org/10.1016/j.molcel.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  2. Friedberg ECW, Siede GC, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. ASM press, Washington, USA

    Google Scholar 

  3. Brandsma I, van Gent DC (2012) Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr 3(1):9. https://doi.org/10.1186/2041-9414-3-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Compe E, Egly J-M (2012) TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol 13(6):343–354

    Article  CAS  Google Scholar 

  5. Egly J-M, Coin F (2011) A history of TFIIH: Two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair 10(7):714–721. https://doi.org/10.1016/j.dnarep.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  6. Kuper J, Kisker C (2012) Damage recognition in nucleotide excision DNA repair. Curr Opin Struct Biol 22(1):88–93. https://doi.org/10.1016/j.sbi.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  7. Drapkin R, Reardon JT, Ansari A, Huang J-C, Zawel L, Ahn K, Sancar A, Reinberg D (1994) Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368(6473):769–772. https://doi.org/10.1038/368769a0

    Article  CAS  PubMed  Google Scholar 

  8. Dip R, Camenisch U, Naegeli H (2004) Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair. DNA Repair (Amst) 3(11):1409–1423

    Article  CAS  Google Scholar 

  9. Kamileri I, Karakasilioti I, Garinis GA (2012) Nucleotide excision repair: new tricks with old bricks. Trends Genet 28(11):566–573. https://doi.org/10.1016/j.tig.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  10. Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JHJ, van Driel R, Vermeulen W, Houtsmuller AB (2006) Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced DNA damage depends on functional TFIIH. Mol Cell Biol 26(23):8868–8879. https://doi.org/10.1128/mcb.00695-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Evans E, Moggs JG, Hwang JR, Egly J-M, Wood RD (1997) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. The EMBO J 16(21):6559–6573. https://doi.org/10.1093/emboj/16.21.6559

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann AR (2003) DNA repair-deficient diseases, xeroderma pigmentosum Cockayne syndrome and trichothiodystrophy. Biochimie 85(11):1101–1111. https://doi.org/10.1016/j.biochi.2003.09.010

    Article  CAS  PubMed  Google Scholar 

  13. Riedl T, Hanaoka F, Egly J-M (2003) The comings and goings of nucleotide excision repair factors on damaged DNA. The EMBO J 22(19):5293–5303. https://doi.org/10.1093/emboj/cdg489

    Article  CAS  PubMed  Google Scholar 

  14. Taylor EM, Broughton BC, Botta E, Stefanini M, Sarasin A, Jaspers NG, Fawcett H, Harcourt SA, Arlett CF, Lehmann AR (1997) Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci USA 94(16):8658–8663

    Article  CAS  Google Scholar 

  15. Kim J, Chubatsu LS, Admon A, Stahl J, Fellous R, Linn S (1995) Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J Biol Chem 270(23):13620–13629. https://doi.org/10.1074/jbc.270.23.13620

    Article  CAS  PubMed  Google Scholar 

  16. Kim SH, Lee JY, Kim J (2005) Characterization of a wide range base-damage-endonuclease activity of mammalian rpS3. Biochem Biophys Res Commun 328(4):962–967. https://doi.org/10.1016/j.bbrc.2005.01.045

    Article  CAS  PubMed  Google Scholar 

  17. Jung S-O, Lee JY, Kim J (2001) Yeast ribosomal protein S3 has an endonuclease activity on AP DNA. Mol Cells 12(1):84–90

    CAS  PubMed  Google Scholar 

  18. Yang HW, Jung Y, Kim HD, Kim J (2020) Ribosomal protein S3-derived repair domain peptides regulate UV-induced matrix metalloproteinase-1. Biochem Biophys Res Commun 530(1):149–154. https://doi.org/10.1016/j.bbrc.2020.06.094

    Article  CAS  PubMed  Google Scholar 

  19. Choi SH, Kim SY, An JJ, Lee SH, Kim DW, Ryu HJ, Lee NI, Yeo SI, Jang SH, Won MH, Kang TC, Kwon HJ, Cho SW, Kim J, Lee KS, Park J, Eum WS, Choi SY (2006) Human PEP-1-ribosomal protein S3 protects against UV-induced skin cell death. FEBS Lett 580(30):6755–6762. https://doi.org/10.1016/j.febslet.2006.11.038

    Article  CAS  PubMed  Google Scholar 

  20. Yang HW, Kim HD, Kim J (2019) The DNA repair domain of human rpS3 protects against photoaging by removing cyclobutane pyrimidine dimers. FEBS Lett 593(15):2060–2068. https://doi.org/10.1002/1873-3468.13479

    Article  CAS  PubMed  Google Scholar 

  21. Kim Y, Kim HD (1833) Kim J (2013) Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance. Biochim Biophys Acta 12:2943–2952. https://doi.org/10.1016/j.bbamcr.2013.07.015

    Article  CAS  Google Scholar 

  22. Han SH, Chung JH, Kim J, Kim K-S, Han YS (2017) New role of human ribosomal protein S3: Regulation of cell cycle via phosphorylation by cyclin-dependent kinase 2. Oncol Lett 13(5):3681–3687. https://doi.org/10.3892/ol.2017.5906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung Y, Kim HD, Yang HW, Kim HJ, Jang C-Y, Kim J (2017) Modulating cellular balance of Rps3 mono-ubiquitination by both Hel2 E3 ligase and Ubp3 deubiquitinase regulates protein quality control. Exp Mol Med 49(11):e390–e390. https://doi.org/10.1038/emm.2017.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Limoncelli KA, Merrikh CN, Moore MJ (2017) ASC1 and RPS3: new actors in 18S nonfunctional rRNA decay. RNA 23(12):1946–1960. https://doi.org/10.1261/rna.061671.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jang CY, Kim HD, Kim J (2012) Ribosomal protein S3 interacts with TRADD to induce apoptosis through caspase dependent JNK activation. Biochem Biophys Res Commun 421(3):474–478. https://doi.org/10.1016/j.bbrc.2012.04.020

    Article  CAS  PubMed  Google Scholar 

  26. Kim SH, Kim J (2006) Reduction of invasion in human fibrosarcoma cells by ribosomal protein S3 in conjunction with Nm23-H1 and ERK. Biochim Biophys Acta 1763(8):823–832. https://doi.org/10.1016/j.bbamcr.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  27. Gao X, Wan F, Mateo K, Callegari E, Wang D, Deng W, Puente J, Li F, Chaussee MS, Finlay BB, Lenardo MJ, Hardwidge PR (2009) Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function. PLoS Pathog 5(12):e1000708. https://doi.org/10.1371/journal.ppat.1000708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao X, Hardwidge PR (2011) Ribosomal protein S3: a multifunctional target of attaching/effacing bacterial pathogens. Frontiers in Microbiology 2:137. https://doi.org/10.3389/fmicb.2011.00137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kemp MG, Reardon JT, Lindsey-Boltz LA, Sancar A (2012) Mechanism of release and fate of excised oligonucleotides during nucleotide excision repair. J Biol Chem 287(27):22889–22899. https://doi.org/10.1074/jbc.M112.374447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Azqueta A, Langie SAS, Slyskova J, Collins AR (2013) Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay—a methodological overview. DNA Repair 12(11):1007–1010. https://doi.org/10.1016/j.dnarep.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  31. Dubaele S, De Santis LP, Bienstock RJ, Keriel A, Stefanini M, Van Houten B, Egly J-M (2003) Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell 11(6):1635–1646. https://doi.org/10.1016/S1097-2765(03)00182-5

    Article  CAS  PubMed  Google Scholar 

  32. Katsumi S, Kobayashi N, Imoto K, Nakagawa A, Yamashina Y, Muramatsu T, Shirai T, Miyagawa S, Sugiura S, Hanaoka F, Matsunaga T, Nikaido O, Mori T (2001) In situ visualization of ultraviolet-light-induced dna damage repair in locally irradiated human fibroblasts. J Investig Dermatol 117(5):1156–1161. https://doi.org/10.1046/j.0022-202x.2001.01540.x

    Article  CAS  PubMed  Google Scholar 

  33. Arab HH, Wani G, Ray A, Shah ZI, Zhu Q, Wani AA (2010) Dissociation of CAK from core TFIIH reveals a functional link between XP-G/CS and the TFIIH disassembly state. PLoS ONE 5(6):e11007. https://doi.org/10.1371/journal.pone.0011007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seroz T, Perez C, Bergmann E, Bradsher J, Egly J-M (2000) p44/SSL1, the regulatory subunit of the XPD/RAD3 helicase, plays a crucial role in the transcriptional activity of TFIIH. J Biol Chem 275(43):33260–33266. https://doi.org/10.1074/jbc.M004764200

    Article  CAS  PubMed  Google Scholar 

  35. Coin F, Bergmann E, Tremeau-Bravard A, Egly J-M (1999) Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J 18(5):1357–1366. https://doi.org/10.1093/emboj/18.5.1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu J, Choi J-H, Gaddameedhi S, Kemp MG, Reardon JT, Sancar A (2013) Nucleotide excision repair in human cells: fate of the excised oligonucleotide carrying dna damage in vivo. J Biol Chem 288(29):20918–20926. https://doi.org/10.1074/jbc.M113.482257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sung P, Bailly V, Weber C, Thompson LH, Prakash L, Prakash S (1993) Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365(6449):852–855

    Article  CAS  Google Scholar 

  38. Lingelbach K, Dobberstein B (1988) An extended RNA/RNA duplex structure within the coding region of mRNA does not block translational elongation. Nucleic Acids Res 16(8):3405–3414

    Article  CAS  Google Scholar 

  39. Takyar S, Hickerson RP, Noller HF (2005) mRNA helicase activity of the ribosome. Cell 120(1):49–58

    Article  CAS  Google Scholar 

  40. Oksenych V, de Jesus BB, Zhovmer A, Egly JM, Coin F (2009) Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J 28(19):2971–2980. https://doi.org/10.1038/emboj.2009.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Flores O, Lu H, Reinberg D (1992) Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. J Biol Chem 267(4):2786–2793

    Article  CAS  Google Scholar 

  42. Ahn EH, Kim DW, Kang HW, Shin MJ, Won MH, Kim J, Kim DJ, Kwon O-S, Kang T-C, Han KH, Park J, Eum WS, Choi SY (2010) Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Toxicology 276(3):192–197. https://doi.org/10.1016/j.tox.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  43. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This paper was supported by National Research Foundation of Korea Grant NRF-2020R1A2C2100803, NRF-2019S1A5A2A03050121 and Korea University Grant.

Author information

Authors and Affiliations

Authors

Contributions

YJP, SHK, and JK designed research; YJP, SHK, SML, BSC, and CIS performed research; YJP, SHK, H-DK, and T-SK contributed to data analysis and research design; H-DK and JK supervised the research; and YJP and JK wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y.J., Kim, S.H., Kim, T.S. et al. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair. Cell. Mol. Life Sci. 78, 3591–3606 (2021). https://doi.org/10.1007/s00018-020-03754-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03754-x

Keywords

Navigation