LFA-1 cluster formation in T-cells depends on l-plastin phosphorylation regulated by P90RSK and PP2A

Abstract

The integrin LFA-1 is crucial for T-cell/ APC interactions and sensitive recognition of antigens. Precise nanoscale organization and valency regulation of LFA-1 are mandatory for an appropriate function of the immune system. While the inside-out signals regulating the LFA-1 affinity are well described, the molecular mechanisms controlling LFA-1 avidity are still not fully understood. Here, we show that activation of the actin-bundling protein l-plastin (LPL) through phosphorylation at serine-5 enables the formation of clusters containing LFA-1 in high-affinity conformation. Phosphorylation of LPL is induced by an nPKC–MEK–p90RSK pathway and counter-regulated by the serine–threonine phosphatase PP2A. Interestingly, recruitment of LFA-1 into the T-cell/APC contact zone is not affected by LPL phosphorylation. Instead, for this process, activation of the actin-remodeling protein cofilin through dephosphorylation is essential. Together, this study reveals a dichotomic spatial regulation of LFA-1 clustering and microscale movement in T-cells by two different actin-binding proteins, LPL and cofilin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Dustin ML (2014) The immunological synapse. Cancer Immunol Res 2(11):1023–1033. https://doi.org/10.1158/2326-6066.CIR-14-0161

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dustin ML, Choudhuri K (2016) Signaling and polarized communication across the T cell immunological synapse. Annu Rev Cell Dev Biol 32:303–325. https://doi.org/10.1146/annurev-cellbio-100814-125330

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Orlik C, Deibel D, Kublbeck J, Balta E, Ganskih S, Habicht J, Niesler B, Schroder-Braunstein J, Schakel K, Wabnitz G, Samstag Y (2019) Keratinocytes costimulate naive human T cells via CD2: a potential target to prevent the development of proinflammatory Th1 cells in the skin. Cell Mol Immunol. https://doi.org/10.1038/s41423-019-0261-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hosseini BH, Louban I, Djandji D, Wabnitz GH, Deeg J, Bulbuc N, Samstag Y, Gunzer M, Spatz JP, Hammerling GJ (2009) Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc Natl Acad Sci USA 106(42):17852–17857. https://doi.org/10.1073/pnas.0905384106

    Article  PubMed  Google Scholar 

  5. 5.

    Stewart M, Hogg N (1996) Regulation of leukocyte integrin function: affinity vs. avidity. J Cell Biochem 61(4):554–561

    CAS  Article  Google Scholar 

  6. 6.

    Sun Z, Costell M, Fassler R (2019) Integrin activation by talin, kindlin and mechanical forces. Nat Cell Biol 21(1):25–31. https://doi.org/10.1038/s41556-018-0234-9

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Bazellieres E, Conte V, Elosegui-Artola A, Serra-Picamal X, Bintanel-Morcillo M, Roca-Cusachs P, Munoz JJ, Sales-Pardo M, Guimera R, Trepat X (2015) Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol 17(4):409–420. https://doi.org/10.1038/ncb3135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Horton ER, Humphries JD, James J, Jones MC, Askari JA, Humphries MJ (2016) The integrin adhesome network at a glance. J Cell Sci 129(22):4159–4163. https://doi.org/10.1242/jcs.192054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cambi A, Joosten B, Koopman M, de Lange F, Beeren I, Torensma R, Fransen JA, Garcia-Parajo M, van Leeuwen FN, Figdor CG (2006) Organization of the integrin LFA-1 in nanoclusters regulates its activity. Mol Biol Cell 17(10):4270–4281. https://doi.org/10.1091/mbc.e05-12-1098

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sun Z, Guo SS, Fassler R (2016) Integrin-mediated mechanotransduction. J Cell Biol 215(4):445–456. https://doi.org/10.1083/jcb.201609037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bakker GJ, Eich C, Torreno-Pina JA, Diez-Ahedo R, Perez-Samper G, van Zanten TS, Figdor CG, Cambi A, Garcia-Parajo MF (2012) Lateral mobility of individual integrin nanoclusters orchestrates the onset for leukocyte adhesion. Proc Natl Acad Sci U S A 109(13):4869–4874. https://doi.org/10.1073/pnas.1116425109

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Shannon MJ, Pineau J, Griffie J, Aaron J, Peel T, Williamson DJ, Zamoyska R, Cope AP, Cornish GH, Owen DM (2019) Differential nanoscale organisation of LFA-1 modulates T cell migration. J Cell Sci. https://doi.org/10.1242/jcs.232991

    Article  PubMed  Google Scholar 

  13. 13.

    Houmadi R, Guipouy D, Rey-Barroso J, Vasconcelos Z, Cornet J, Manghi M, Destainville N, Valitutti S, Allart S, Dupre L (2018) The Wiskott-Aldrich syndrome protein contributes to the assembly of the LFA-1 nanocluster belt at the lytic synapse. Cell Rep 22(4):979–991. https://doi.org/10.1016/j.celrep.2017.12.088

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Kalappurakkal JM, Anilkumar AA, Patra C, van Zanten TS, Sheetz MP, Mayor S (2019) Integrin mechano-chemical signaling generates plasma membrane nanodomains that promote cell spreading. Cell 177(7):1738-1756 e1723. https://doi.org/10.1016/j.cell.2019.04.037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Comrie WA, Babich A, Burkhardt JK (2015) F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. J Cell Biol 208(4):475–491. https://doi.org/10.1083/jcb.201406121

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Siokis A, Robert PA, Demetriou P, Dustin ML, Meyer-Hermann M (2018) F-Actin-Driven CD28-CD80 localization in the immune synapse. Cell Rep 24(5):1151–1162. https://doi.org/10.1016/j.celrep.2018.06.114

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Balta E, Hardt R, Liang J, Kirchgessner H, Orlik C, Jahraus B, Hillmer S, Meuer S, Hubner K, Wabnitz GH, Samstag Y (2019) Spatial oxidation of L-plastin downmodulates actin-based functions of tumor cells. Nat Commun 10(1):4073. https://doi.org/10.1038/s41467-019-11909-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wabnitz GH, Lohneis P, Kirchgessner H, Jahraus B, Gottwald S, Konstandin M, Klemke M, Samstag Y (2010) Sustained LFA-1 cluster formation in the immune synapse requires the combined activities of L-plastin and calmodulin. Eur J Immunol 40(9):2437–2449. https://doi.org/10.1002/eji.201040345

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wabnitz GH, Kocher T, Lohneis P, Stober C, Konstandin MH, Funk B, Sester U, Wilm M, Klemke M, Samstag Y (2007) Costimulation induced phosphorylation of L-plastin facilitates surface transport of the T cell activation molecules CD69 and CD25. Eur J Immunol 37(3):649–662. https://doi.org/10.1002/eji.200636320

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Wabnitz GH, Kirchgessner H, Jahraus B, Umansky L, Shenolikar S, Samstag Y (2018) Protein phosphatase 1alpha and cofilin regulate nuclear translocation of NF-kappaB and promote expression of the anti-inflammatory cytokine interleukin-10 by T Cells. Mol Cell Biol. https://doi.org/10.1128/MCB.00041-18

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Klemke M, Kramer E, Konstandin MH, Wabnitz GH, Samstag Y (2010) An MEK-cofilin signalling module controls migration of human T cells in 3D but not 2D environments. EMBO J 29(17):2915–2929. https://doi.org/10.1038/emboj.2010.153

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Wabnitz GH, Nebl G, Klemke M, Schroder AJ, Samstag Y (2006) Phosphatidylinositol 3-kinase functions as a Ras effector in the signaling cascade that regulates dephosphorylation of the actin-remodeling protein cofilin after costimulation of untransformed human T lymphocytes. J Immunol 176(3):1668–1674

    CAS  Article  Google Scholar 

  23. 23.

    Jaaro H, Rubinfeld H, Hanoch T, Seger R (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc Natl Acad Sci U S A 94(8):3742–3747. https://doi.org/10.1073/pnas.94.8.3742

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wabnitz G, Kirchgessner H, Samstag Y (2019) Qualitative and quantitative analysis of the immune synapse in the human system using imaging flow cytometry. J Vis Exp. https://doi.org/10.3791/55345

    Article  PubMed  Google Scholar 

  25. 25.

    Balta E, Stopp J, Castelletti L, Kirchgessner H, Samstag Y, Wabnitz GH (2017) Qualitative and quantitative analysis of PMN/T-cell interactions by InFlow and super-resolution microscopy. Methods 112:25–38. https://doi.org/10.1016/j.ymeth.2016.09.013

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Wabnitz GH, Samstag Y (2016) Multiparametric characterization of human T-Cell immune synapses by InFlow microscopy. Methods Mol Biol 1389:155–166. https://doi.org/10.1007/978-1-4939-3302-0_10

    Article  PubMed  Google Scholar 

  27. 27.

    Wabnitz GH, Kirchgessner H, Samstag Y (2017) Imaging flow cytometry for multiparametric analysis of molecular mechanism involved in the cytotoxicity of human CD8+ T-cells. J Cell Biochem 118(9):2528–2533. https://doi.org/10.1002/jcb.25963

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Lagache T, Grassart A, Dallongeville S, Faklaris O, Sauvonnet N, Dufour A, Danglot L, Olivo-Marin JC (2018) Mapping molecular assemblies with fluorescence microscopy and object-based spatial statistics. Nat Commun 9(1):698. https://doi.org/10.1038/s41467-018-03053-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Aaron JS, Taylor AB, Chew TL (2018) Image co-localization—co-occurrence versus correlation. J Cell Sci. https://doi.org/10.1242/jcs.211847

    Article  PubMed  Google Scholar 

  30. 30.

    Henning SW, Meuer SC, Samstag Y (1994) Serine phosphorylation of a 67kDa protein in human T lymphocytes represents an accessory receptor mediated signalling event. J Immunol 152:4808–4815

    CAS  PubMed  Google Scholar 

  31. 31.

    Janji B, Giganti A, De Corte V, Catillon M, Bruyneel E, Lentz D, Plastino J, Gettemans J, Friederich E (2006) Phosphorylation on Ser5 increases the F-actin-binding activity of L-plastin and promotes its targeting to sites of actin assembly in cells. J Cell Sci 119(Pt 9):1947–1960

    CAS  Article  Google Scholar 

  32. 32.

    Porter JC, Bracke M, Smith A, Davies D, Hogg N (2002) Signaling through integrin LFA-1 leads to filamentous actin polymerization and remodeling, resulting in enhanced T cell adhesion. J Immunol 168(12):6330–6335. https://doi.org/10.4049/jimmunol.168.12.6330

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Gschwendt M, Dieterich S, Rennecke J, Kittstein W, Mueller HJ, Johannes FJ (1996) Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett 392(2):77–80

    CAS  Article  Google Scholar 

  34. 34.

    Toker A, Newton AC (2000) Cellular signaling: pivoting around PDK-1. Cell 103(2):185–188. https://doi.org/10.1016/s0092-8674(00)00110-0

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Herbert TP, Tee AR, Proud CG (2002) The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem 277(13):11591–11596. https://doi.org/10.1074/jbc.M110367200

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Lommel MJ, Trairatphisan P, Gabler K, Laurini C, Muller A, Kaoma T, Vallar L, Sauter T, Schaffner-Reckinger E (2016) L-plastin Ser5 phosphorylation in breast cancer cells and in vitro is mediated by RSK downstream of the ERK/MAPK pathway. FASEB J 30(3):1218–1233. https://doi.org/10.1096/fj.15-276311

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Jones SL, Wang J, Turck CW, Brown EJ (1998) A role for the actin-bundling protein L-plastin in the regulation of leukocyte integrin function. Proc Natl Acad Sci USA 95:9331–9336

    CAS  Article  Google Scholar 

  38. 38.

    Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL, Roberts TM (1990) Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60(1):167–176

    CAS  Article  Google Scholar 

  39. 39.

    Welte S, Baringhaus KH, Schmider W, Muller G, Petry S, Tennagels N (2005) 6,8-Difluoro-4-methylumbiliferyl phosphate: a fluorogenic substrate for protein tyrosine phosphatases. Anal Biochem 338(1):32–38. https://doi.org/10.1016/j.ab.2004.11.047

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Janji B, Vallar L, Al-Tanoury Z, Bernardin F, Vetter G, Schaffner-Reckinger E, Berchem G, Friederich E, Chouaib S (2009) The actin filament cross-linker L-plastin confers resistance to TNF-alpha in MCF-7 breast cancer cells in a phosphorylation-dependent manner. J Cell Mol Med. https://doi.org/10.1111/j.1582-4934.2009.00918.x

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wabnitz GH, Michalke F, Stober C, Kirchgessner H, Jahraus B, van den Boomen DJ, Samstag Y (2011) L-plastin phosphorylation: a novel target for the immunosuppressive drug dexamethasone in primary human T cells. Eur J Immunol 41(11):3157–3169. https://doi.org/10.1002/eji.201041366

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Davenport AJ, Cross RS, Watson KA, Liao Y, Shi W, Prince HM, Beavis PA, Trapani JA, Kershaw MH, Ritchie DS, Darcy PK, Neeson PJ, Jenkins MR (2018) Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci U S A 115(9):E2068–E2076. https://doi.org/10.1073/pnas.1716266115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Nebl G, Fischer S, Penzel R, Samstag Y (2004) Dephosphorylation of cofilin is regulated through Ras and requires the combined activities of the Ras-effectors MEK and PI3K. Cell Signal 16(2):235–243

    CAS  Article  Google Scholar 

  44. 44.

    Samstag Y, John I, Wabnitz GH (2013) Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol Rev 256(1):30–47. https://doi.org/10.1111/imr.12115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y (2000) The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol 30:3422–3431

    CAS  Article  Google Scholar 

  46. 46.

    van Kooyk Y, van Vliet SJ, Figdor CG (1999) The actin cytoskeleton regulates LFA-1 ligand binding through avidity rather than affinity changes. J Biol Chem 274(38):26869–26877

    Article  Google Scholar 

  47. 47.

    van Kooyk Y, Figdor CG (2000) Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr Opin Cell Biol 12:542–547

    Article  Google Scholar 

  48. 48.

    Jones SL, Brown EJ (1996) FcgammaRII-mediated adhesion and phagocytosis induce L-plastin phosphorylation in human neutrophils. J Biol Chem 271(24):14623–14630

    CAS  Article  Google Scholar 

  49. 49.

    Langereis JD, Prinsen BH, de Sain-van der Velden MG, Coppens CJ, Koenderman L, Ulfman LH (2009) A 2D-DIGE approach to identify proteins involved in inside-out control of integrins. J Proteome Res 8(8):3824–3833. https://doi.org/10.1021/pr8010815

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Le Goff E, Vallentin A, Harmand PO, Aldrian-Herrada G, Rebiere B, Roy C, Benyamin Y, Lebart MC (2010) Characterization of L-plastin interaction with beta integrin and its regulation by micro-calpain. Cytoskeleton 67(5):286–296. https://doi.org/10.1002/cm.20442

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    De Clercq S, Zwaenepoel O, Martens E, Vandekerckhove J, Guillabert A, Gettemans J (2013) Nanobody-induced perturbation of LFA-1/L-plastin phosphorylation impairs MTOC docking, immune synapse formation and T cell activation. Cell Mol Life Sci 70(5):909–922. https://doi.org/10.1007/s00018-012-1169-0

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25(21):9543–9553. https://doi.org/10.1128/MCB.25.21.9543-9553.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Apostolidis SA, Rodriguez-Rodriguez N, Suarez-Fueyo A, Dioufa N, Ozcan E, Crispin JC, Tsokos MG, Tsokos GC (2016) Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol 17(5):556–564. https://doi.org/10.1038/ni.3390

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13(3):313–322

    CAS  Article  Google Scholar 

  55. 55.

    Eitelhuber AC, Warth S, Schimmack G, Duwel M, Hadian K, Demski K, Beisker W, Shinohara H, Kurosaki T, Heissmeyer V, Krappmann D (2011) Dephosphorylation of Carma1 by PP2A negatively regulates T-cell activation. EMBO J 30(3):594–605. https://doi.org/10.1038/emboj.2010.331

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Xu Q, Jin X, Zheng M, Rohila D, Fu G, Wen Z, Lou J, Wu S, Sloan R, Wang L, Hu H, Gao X, Lu L (2019) Phosphatase PP2A is essential for TH17 differentiation. Proc Natl Acad Sci U S A 116(3):982–987. https://doi.org/10.1073/pnas.1807484116

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Ho WS, Wang H, Maggio D, Kovach JS, Zhang Q, Song Q, Marincola FM, Heiss JD, Gilbert MR, Lu R, Zhuang Z (2018) Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 9(1):2126. https://doi.org/10.1038/s41467-018-04425-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86

    CAS  Article  Google Scholar 

  59. 59.

    Hashimoto-Tane A, Sakuma M, Ike H, Yokosuka T, Kimura Y, Ohara O, Saito T (2016) Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation. J Exp Med 213(8):1609–1625. https://doi.org/10.1084/jem.20151088

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Marwali MR, Rey-Ladino J, Dreolini L, Shaw D, Takei F (2003) Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood 102(1):215–222. https://doi.org/10.1182/blood-2002-10-3195

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Carman CV, Jun CD, Salas A, Springer TA (2003) Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1. J Immunol 171(11):6135–6144

    CAS  Article  Google Scholar 

  62. 62.

    Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310(5751):1191–1193. https://doi.org/10.1126/science.1119238

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Pettmann J, Santos AM, Dushek O, Davis SJ (2018) Membrane ultrastructure and T Cell activation. Front Immunol 9:2152. https://doi.org/10.3389/fimmu.2018.02152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Razvag Y, Neve-Oz Y, Sajman J, Yakovian O, Reches M, Sherman E (2019) T Cell Activation through Isolated Tight Contacts. Cell Rep 29(11):3506-3521 e3506. https://doi.org/10.1016/j.celrep.2019.11.022

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Fabbri M, Di Meglio S, Gagliani MC, Consonni E, Molteni R, Bender JR, Tacchetti C, Pardi R (2005) Dynamic partitioning into lipid rafts controls the endo-exocytic cycle of the alphaL/beta2 integrin, LFA-1, during leukocyte chemotaxis. Mol Biol Cell 16(12):5793–5803. https://doi.org/10.1091/mbc.e05-05-0413

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Svensson L, Stanley P, Willenbrock F, Hogg N (2012) The Galphaq/11 proteins contribute to T lymphocyte migration by promoting turnover of integrin LFA-1 through recycling. PLoS ONE 7(6):e38517. https://doi.org/10.1371/journal.pone.0038517

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Sampath R, Gallagher PJ, Pavalko FM (1998) Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail. Activation-dependent regulation of associations with talin and alpha-actinin. J Biol Chem 273:33588–33594

    CAS  Article  Google Scholar 

  68. 68.

    Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E, Kolanus W, Robinson MK, Staunton DE, von Andrian UH, Alon R (2005) Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6(5):497–506. https://doi.org/10.1038/ni1194

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH, Calderwood DA (2003) Talin binding to integrin beta tails: a final common step in integrin activation. Science 302(5642):103–106. https://doi.org/10.1126/science.1086652

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Simonson WT, Franco SJ, Huttenlocher A (2006) Talin1 regulates TCR-mediated LFA-1 function. J Immunol 177(11):7707–7714

    CAS  Article  Google Scholar 

  71. 71.

    Walling BL, Kim M (2018) LFA-1 in T cell migration and differentiation. Front Immunol 9:952. https://doi.org/10.3389/fimmu.2018.00952

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11(4):288–300. https://doi.org/10.1038/nrm2871

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Ley K, Rivera-Nieves J, Sandborn WJ, Shattil S (2016) Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat Rev Drug Discov 15(3):173–183. https://doi.org/10.1038/nrd.2015.10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Takada I, Yogiashi Y, Makishima M (2016) The ribosomal S6 kinase inhibitor BI-D1870 ameliorated experimental autoimmune encephalomyelitis in mice. Immunobiology 221(2):188–192. https://doi.org/10.1016/j.imbio.2015.09.008

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Lin CS, Aebersold RH, Kent SB, Varma M, Leavitt J (1988) Molecular cloning and characterization of plastin, a human leukocyte protein expressed in transformed human fibroblasts. Mol Cell Biol 8(11):4659–4668

    CAS  Article  Google Scholar 

  76. 76.

    Wu L, Martin TD, Carrington M, KewalRamani VN (2004) Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 318(1):17–23. https://doi.org/10.1016/j.virol.2003.09.028

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the German research foundation (SA 393/3-4, TRR156-B4 and INST 114089/31-1 FUGG).

Author information

Affiliations

Authors

Contributions

GHW and YS designed the study; SH, CO, JH, and HK performed experiments; YS raised funding; GHW, CO, SH and YS wrote the manuscript.

Corresponding author

Correspondence to Guido H. Wabnitz.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5472 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wabnitz, G.H., Honus, S., Habicht, J. et al. LFA-1 cluster formation in T-cells depends on l-plastin phosphorylation regulated by P90RSK and PP2A. Cell. Mol. Life Sci. (2021). https://doi.org/10.1007/s00018-020-03744-z

Download citation

Keywords

  • Immune synapse
  • LPL
  • T-cells
  • LFA-1 cluster
  • PP2A
  • p90RSK