Abstract
The success of investigations on the structure and function of the genome (genomics) has been paralleled by an equally awesome progress in the analysis of protein structure and function (proteomics). We propose that the investigation of carbohydrate structures that go beyond a cell’s metabolism is a rapidly developing frontier in our expanding knowledge on the structure and function of carbohydrates (glycomics). No other functional system appears to be suited as well as the nervous system to study the functions of glycans, which had been originally characterized outside the nervous system. In this review, we describe the multiple studies on the functions of LewisX, the human natural killer cell antigen-1 (HNK-1), as well as oligomannosidic and sialic (neuraminic) acids. We attempt to show the sophistication of these structures in ontogenetic development, synaptic function and plasticity, and recovery from trauma, with a view on neurodegeneration and possibilities to ameliorate deterioration. In view of clinical applications, we emphasize the need for glycomimetic small organic compounds which surpass the usefulness of natural glycans in that they are metabolically more stable, more parsimonious to synthesize or isolate, and more advantageous for therapy, since many of them pass the blood brain barrier and are drug-approved for treatments other than those in the nervous system, thus allowing a more ready access for application in neurological diseases. We describe the isolation of such mimetic compounds using not only Western NIH, but also traditional Chinese medical libraries. With this review, we hope to deepen the interests in this exciting field.
This is a preview of subscription content, access via your institution.




References
- 1.
Aoki-Kinoshita K, Agravat S, Aoki NP, Arpinar S, Cummings RD, Fujita A, Fujita N, Hart GM, Haslam SM, Kawasaki T, Matsubara M, Moreman KW, Okuda S, Pierce M, Ranzinger R, Shikanai T, Shinmachi D, Solovieva E, Suzuki Y, Tsuchiya S, Yamada I, York WS, Zaia J, Narimatsu H (2016) GlyTouCan 1.0–the international glycan structure repository. Nucleic Acids Res 44(D1):D1237–1242. https://doi.org/10.1093/nar/gkv1041
- 2.
Seeberger PH (2015) Monosaccharide diversity. In: Varki A, Cummings RD, et al. (eds) Essentials of glycobiology. Cold Spring Harbor, New York, pp 19–30. https://doi.org/10.1101/glycobiology.3e.002
- 3.
Prestegard JH, Liu J, Widmalm G (2015) Oligosaccharides and polysaccharides. In: Varki A, Cummings RD, et al. (eds) Essentials of glycobiology. Cold Spring Harbor, New York, pp 31–40. https://doi.org/10.1101/glycobiology.3e.003
- 4.
Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T, Prestegard JJ, Schnaar RL, Freeze HH, Marth JD, Bertozzi CR, Etzler ME, Frank M, Vliegenthart JF, Lutteke T, Perez S, Bolton E, Rudd P, Paulson J, Kanehisa M, Toukach P, Aoki-Kinoshita KF, Dell A, Narimatsu H, York W, Taniguchi N, Kornfeld S (2015) Symbol nomenclature for graphical representations of glycans. Glycobiology 25(12):1323–1324. https://doi.org/10.1093/glycob/cwv091
- 5.
Gagneux P, Aebi M, Varki A (2015) Evolution of glycan diversity. In: Varki A, Cummings RD, et al. (eds) Essentials of glycobiology. Cold Spring Harbor, New York, pp 253–264. https://doi.org/10.1101/glycobiology.3e.020
- 6.
Kopitz J (2017) Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2):175–198. https://doi.org/10.1007/s00418-016-1518-4
- 7.
Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56R. https://doi.org/10.1093/glycob/12.4.43r
- 8.
de Beer T, Vliegenthart JF, Loffler A, Hofsteenge J (1995) The hexopyranosyl residue that is C-glycosidically linked to the side chain of tryptophan-7 in human RNase Us is alpha-mannopyranose. Biochemistry 34(37):11785–11789. https://doi.org/10.1021/bi00037a016
- 9.
Xiao H, Chen W, Smeekens JM, Wu R (2018) An enrichment method based on synergistic and reversible covalent interactions for large-scale analysis of glycoproteins. Nat Commun 9(1):1692. https://doi.org/10.1038/s41467-018-04081-3
- 10.
Freeze HH, Eklund EA, Ng BG, Patterson MC (2012) Neurology of inherited glycosylation disorders. Lancet Neurol 11(5):453–466. https://doi.org/10.1016/S1474-4422(12)70040-6
- 11.
Medina-Cano D, Ucuncu E, Nguyen LS, Nicouleau M, Lipecka J, Bizot JC, Thiel C, Foulquier F, Lefort N, Faivre-Sarrailh C, Colleaux L, Guerrera IC, Cantagrel V (2018) High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. eLife. https://doi.org/10.7554/eLife.38309
- 12.
Solter D, Knowles BB (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 75(11):5565–5569. https://doi.org/10.1073/pnas.75.11.5565
- 13.
Kudo T, Fujii T, Ikegami S, Inokuchi K, Takayama Y, Ikehara Y, Nishihara S, Togayachi A, Takahashi S, Tachibana K, Yuasa S, Narimatsu H (2007) Mice lacking alpha1,3-fucosyltransferase IX demonstrate disappearance of Lewis x structure in brain and increased anxiety-like behaviors. Glycobiology 17(1):1–9. https://doi.org/10.1093/glycob/cwl047
- 14.
Kumar A, Torii T, Ishino Y, Muraoka D, Yoshimura T, Togayachi A, Narimatsu H, Ikenaka K, Hitoshi S (2013) The Lewis X-related alpha1,3-fucosyltransferase, Fut10, is required for the maintenance of stem cell populations. J Biol Chem 288(40):28859–28868. https://doi.org/10.1074/jbc.M113.469403
- 15.
Chen YJ, Wing DR, Guile GR, Dwek RA, Harvey DJ, Zamze S (1998) Neutral N-glycans in adult rat brain tissue–complete characterisation reveals fucosylated hybrid and complex structures. Eur J Biochem 251(3):691–703. https://doi.org/10.1046/j.1432-1327.1998.2510691.x
- 16.
Chai W, Yuen CT, Kogelberg H, Carruthers RA, Margolis RU, Feizi T, Lawson AM (1999) High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur J Biochem 263(3):879–888. https://doi.org/10.1046/j.1432-1327.1999.00572.x
- 17.
Yaji S, Manya H, Nakagawa N, Takematsu H, Endo T, Kannagi R, Yoshihara T, Asano M, Oka S (2015) Major glycan structure underlying expression of the Lewis X epitope in the developing brain is O-mannose-linked glycans on phosphacan/RPTPbeta. Glycobiology 25(4):376–385. https://doi.org/10.1093/glycob/cwu118
- 18.
Lieberoth A, Splittstoesser F, Katagihallimath N, Jakovcevski I, Loers G, Ranscht B, Karagogeos D, Schachner M, Kleene R (2009) Lewis(x) and alpha2,3-sialyl glycans and their receptors TAG-1, Contactin, and L1 mediate CD24-dependent neurite outgrowth. J Neurosci 29(20):6677–6690. https://doi.org/10.1523/JNEUROSCI.4361-08.2009
- 19.
Wang S, Cesca F, Loers G, Schweizer M, Buck F, Benfenati F, Schachner M, Kleene R (2011) Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 31(20):7275–7290. https://doi.org/10.1523/JNEUROSCI.6476-10.2011
- 20.
Hennen E, Safina D, Haussmann U, Worsdorfer P, Edenhofer F, Poetsch A, Faissner A (2013) A LewisX glycoprotein screen identifies the low density lipoprotein receptor-related protein 1 (LRP1) as a modulator of oligodendrogenesis in mice. J Biol Chem 288(23):16538–16545. https://doi.org/10.1074/jbc.M112.419812
- 21.
Hakomori S (1992) Le(X) and related structures as adhesion molecules. Histochem J 24(11):771–776. https://doi.org/10.1007/bf01046348
- 22.
Dvorak P, Hampl A, Jirmanova L, Pacholikova J, Kusakabe M (1998) Embryoglycan ectodomains regulate biological activity of FGF-2 to embryonic stem cells. J Cell Sci 111(Pt 19):2945–2952
- 23.
Jirmanova L, Pacholikova J, Krejci P, Hampl A, Dvorak P (1999) O-linked carbohydrates are required for FGF-2-mediated proliferation of mouse embryonic cells. Int J Dev Biol 43(6):555–562
- 24.
Capela A, Temple S (2006) LeX is expressed by principle progenitor cells in the embryonic nervous system, is secreted into their environment and binds Wnt-1. Dev Biol 291(2):300–313. https://doi.org/10.1016/j.ydbio.2005.12.030
- 25.
Lutz D, Loers G, Kleene R, Oezen I, Kataria H, Katagihallimath N, Braren I, Harauz G, Schachner M (2014) Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival. J Biol Chem 289(19):13503–13518. https://doi.org/10.1074/jbc.M113.530238
- 26.
Karus M, Hennen E, Safina D, Klausmeyer A, Wiese S, Faissner A (2013) Differential expression of micro-heterogeneous LewisX-type glycans in the stem cell compartment of the developing mouse spinal cord. Neurochem Res 38(6):1285–1294. https://doi.org/10.1007/s11064-013-1048-6
- 27.
Yagi H, Saito T, Yanagisawa M, Yu RK, Kato K (2012) Lewis X-carrying N-glycans regulate the proliferation of mouse embryonic neural stem cells via the Notch signaling pathway. J Biol Chem 287(29):24356–24364. https://doi.org/10.1074/jbc.M112.365643
- 28.
Hennen E, Czopka T, Faissner A (2011) Structurally distinct LewisX glycans distinguish subpopulations of neural stem/progenitor cells. J Biol Chem 286(18):16321–16331. https://doi.org/10.1074/jbc.M110.201095
- 29.
Gocht A, Struckhoff G, Lhler J (1996) CD15-containing glycoconjugates in the central nervous system. Histol Histopathol 11(4):1007–1028
- 30.
Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35(5):865–875. https://doi.org/10.1016/s0896-6273(02)00835-8
- 31.
Koles K, McDowell W, Mileusnic R, Rose SP (2005) Glycan analysis of the chicken synaptic plasma membrane glycoproteins–a major synaptic N-glycan carries the LewisX determinant. Int J Biol Sci 1(4):126–134. https://doi.org/10.7150/ijbs.1.126
- 32.
Theis T, Johal AS, Kabat M, Basak S, Schachner M (2018) Enhanced neuronal survival and neurite outgrowth triggered by novel small organic compounds mimicking the LewisX glycan. Mol Neurobiol 55(10):8203–8215. https://doi.org/10.1007/s12035-018-0953-8
- 33.
Katagihallimath N, Mehanna A, Guseva D, Kleene R, Schachner M (2010) Identification and validation of a Lewis x glycomimetic peptide. Eur J Cell Biol 89(1):77–86. https://doi.org/10.1016/j.ejcb.2009.10.007
- 34.
Abo T, Balch CM (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 127(3):1024–1029
- 35.
Chou DK, Ilyas AA, Evans JE, Costello C, Quarles RH, Jungalwala FB (1986) Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J Biol Chem 261(25):11717–11725
- 36.
Chou KH, Ilyas AA, Evans JE, Quarles RH, Jungalwala FB (1985) Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1. Biochem Biophys Res Commun 128(1):383–388. https://doi.org/10.1016/0006-291x(85)91690-0
- 37.
Terayama K, Oka S, Seiki T, Miki Y, Nakamura A, Kozutsumi Y, Takio K, Kawasaki T (1997) Cloning and functional expression of a novel glucuronyltransferase involved in the biosynthesis of the carbohydrate epitope HNK-1. Proc Natl Acad Sci USA 94(12):6093–6098. https://doi.org/10.1073/pnas.94.12.6093
- 38.
Bakker H, Friedmann I, Oka S, Kawasaki T, Nifant'ev N, Schachner M, Mantei N (1997) Expression cloning of a cDNA encoding a sulfotransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. J Biol Chem 272(47):29942–29946
- 39.
Ong E, Yeh JC, Ding Y, Hindsgaul O, Fukuda M (1998) Expression cloning of a human sulfotransferase that directs the synthesis of the HNK-1 glycan on the neural cell adhesion molecule and glycolipids. J Biol Chem 273(9):5190–5195. https://doi.org/10.1074/jbc.273.9.5190
- 40.
Yoshihara T, Sugihara K, Kizuka Y, Oka S, Asano M (2009) Learning/memory impairment and reduced expression of the HNK-1 carbohydrate in beta4-galactosyltransferase-II-deficient mice. J Biol Chem 284(18):12550–12561. https://doi.org/10.1074/jbc.M809188200
- 41.
Yabuno K, Morise J, Kizuka Y, Hashii N, Kawasaki N, Takahashi S, Miyata S, Izumikawa T, Kitagawa H, Takematsu H, Oka S (2015) A sulfated glycosaminoglycan linkage region is a novel type of human natural killer-1 (HNK-1) epitope expressed on aggrecan in perineuronal nets. PLoS ONE 10(12):e0144560. https://doi.org/10.1371/journal.pone.0144560
- 42.
Kruse J, Mailhammer R, Wernecke H, Faissner A, Sommer I, Goridis C, Schachner M (1984) Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311(5982):153–155. https://doi.org/10.1038/311153a0
- 43.
Yoshihara Y, Kawasaki M, Tamada A, Fujita H, Hayashi H, Kagamiyama H, Mori K (1997) OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci 17(15):5830–5842
- 44.
Voshol H, van Zuylen CW, Orberger G, Vliegenthart JF, Schachner M (1996) Structure of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0. J Biol Chem 271(38):22957–22960
- 45.
Nakamura A, Morise J, Yabuno-Nakagawa K, Hashimoto Y, Takematsu H, Oka S (2019) Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1. PLoS ONE 14(1):e0210193. https://doi.org/10.1371/journal.pone.0210193
- 46.
Margolis RK, Ripellino JA, Goossen B, Steinbrich R, Margolis RU (1987) Occurrence of the HNK-1 epitope (3-sulfoglucuronic acid) in PC12 pheochromocytoma cells, chromaffin granule membranes, and chondroitin sulfate proteoglycans. Biochem Biophys Res Commun 145(3):1142–1148. https://doi.org/10.1016/0006-291x(87)91556-7
- 47.
Morise J, Kizuka Y, Yabuno K, Tonoyama Y, Hashii N, Kawasaki N, Manya H, Miyagoe-Suzuki Y, Takeda S, Endo T, Maeda N, Takematsu H, Oka S (2014) Structural and biochemical characterization of O-mannose-linked human natural killer-1 glycan expressed on phosphacan in developing mouse brains. Glycobiology 24(3):314–324. https://doi.org/10.1093/glycob/cwt116
- 48.
Morita I, Kakuda S, Takeuchi Y, Itoh S, Kawasaki N, Kizuka Y, Kawasaki T, Oka S (2009) HNK-1 glyco-epitope regulates the stability of the glutamate receptor subunit GluR2 on the neuronal cell surface. J Biol Chem 284(44):30209–30217. https://doi.org/10.1074/jbc.M109.024208
- 49.
Hall H, Deutzmann R, Timpl R, Vaughan L, Schmitz B, Schachner M (1997) HNK-1 carbohydrate-mediated cell adhesion to laminin-1 is different from heparin-mediated and sulfatide-mediated cell adhesion. Eur J Biochem 246(1):233–242
- 50.
Hall H, Vorherr T, Schachner M (1995) Characterization of a 21 amino acid peptide sequence of the laminin G2 domain that is involved in HNK-1 carbohydrate binding and cell adhesion. Glycobiology 5(4):435–441. https://doi.org/10.1093/glycob/5.4.435
- 51.
Chou DK, Evans JE, Jungalwala FB (2001) Identity of nuclear high-mobility-group protein, HMG-1, and sulfoglucuronyl carbohydrate-binding protein, SBP-1, in brain. J Neurochem 77(1):120–131. https://doi.org/10.1046/j.1471-4159.2001.t01-1-00209.x
- 52.
Fang P, Schachner M, Shen YQ (2012) HMGB1 in development and diseases of the central nervous system. Mol Neurobiol 45(3):499–506. https://doi.org/10.1007/s12035-012-8264-y
- 53.
Saghatelyan AK, Snapyan M, Gorissen S, Meigel I, Mosbacher J, Kaupmann K, Bettler B, Kornilov AV, Nifantiev NE, Sakanyan V, Schachner M, Dityatev A (2003) Recognition molecule associated carbohydrate inhibits postsynaptic GABA(B) receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses. Mol Cell Neurosci 24(2):271–282
- 54.
Griffith LS, Schmitz B, Schachner M (1992) L2/HNK-1 carbohydrate and protein-protein interactions mediate the homophilic binding of the neural adhesion molecule P0. J Neurosci Res 33(4):639–648. https://doi.org/10.1002/jnr.490330417
- 55.
Cole GJ, Schachner M (1987) Localization of the L2 monoclonal antibody binding site on chicken neural cell adhesion molecule (NCAM) and evidence for its role in NCAM-mediated cell adhesion. Neurosci Lett 78(2):227–232. https://doi.org/10.1016/0304-3940(87)90638-0
- 56.
Keilhauer G, Faissner A, Schachner M (1985) Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature 316(6030):728–730. https://doi.org/10.1038/316728a0
- 57.
Kunemund V, Jungalwala FB, Fischer G, Chou DK, Keilhauer G, Schachner M (1988) The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions. J Cell Biol 106(1):213–223. https://doi.org/10.1083/jcb.106.1.213
- 58.
Schwarting GA, Jungalwala FB, Chou DK, Boyer AM, Yamamoto M (1987) Sulfated glucuronic acid-containing glycoconjugates are temporally and spatially regulated antigens in the developing mammalian nervous system. Dev Biol 120(1):65–76. https://doi.org/10.1016/0012-1606(87)90104-7
- 59.
Yagi H, Yanagisawa M, Suzuki Y, Nakatani Y, Ariga T, Kato K, Yu RK (2010) HNK-1 epitope-carrying tenascin-C spliced variant regulates the proliferation of mouse embryonic neural stem cells. J Biol Chem 285(48):37293–37301. https://doi.org/10.1074/jbc.M110.157081
- 60.
Martini R, Bollensen E, Schachner M (1988) Immunocytological localization of the major peripheral nervous system glycoprotein P0 and the L2/HNK-1 and L3 carbohydrate structures in developing and adult mouse sciatic nerve. Dev Biol 129(2):330–338. https://doi.org/10.1016/0012-1606(88)90380-6
- 61.
Saghatelyan AK, Gorissen S, Albert M, Hertlein B, Schachner M, Dityatev A (2000) The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus. Eur J Neurosci 12(9):3331–3342. https://doi.org/10.1046/j.1460-9568.2000.00216.x
- 62.
Marzban H, Sillitoe RV, Hoy M, Chung SH, Rafuse VF, Hawkes R (2004) Abnormal HNK-1 expression in the cerebellum of an N-CAM null mouse. J Neurocytol 33(1):117–130. https://doi.org/10.1023/B:NEUR.0000029652.96456.0d
- 63.
Strekalova T, Wotjak CT, Schachner M (2001) Intrahippocampal administration of an antibody against the HNK-1 carbohydrate impairs memory consolidation in an inhibitory learning task in mice. Mol Cell Neurosci 17(6):1102–1113. https://doi.org/10.1006/mcne.2001.0991
- 64.
Pradel G, Schachner M, Schmidt R (1999) Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish. J Neurobiol 39(2):197–206. https://doi.org/10.1002/(SICI)1097-4695(199905)39:2<197:AID-NEU4>3.0.CO;2-9
- 65.
Senn C, Kutsche M, Saghatelyan A, Bosl MR, Lohler J, Bartsch U, Morellini F, Schachner M (2002) Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and spatial learning and memory. Mol Cell Neurosci 20(4):712–729. https://doi.org/10.1006/mcne.2002.1142
- 66.
Yamamoto S, Oka S, Inoue M, Shimuta M, Manabe T, Takahashi H, Miyamoto M, Asano M, Sakagami J, Sudo K, Iwakura Y, Ono K, Kawasaki T (2002) Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. J Biol Chem 277(30):27227–27231. https://doi.org/10.1074/jbc.C200296200
- 67.
Morita I, Kakuda S, Takeuchi Y, Kawasaki T, Oka S (2009) HNK-1 (human natural killer-1) glyco-epitope is essential for normal spine morphogenesis in developing hippocampal neurons. Neuroscience 164(4):1685–1694. https://doi.org/10.1016/j.neuroscience.2009.09.065
- 68.
Garcia-Ayllon MS, Botella-Lopez A, Cuchillo-Ibanez I, Rabano A, Andreasen N, Blennow K, Avila J, Saez-Valero J (2017) HNK-1 carrier glycoproteins are decreased in the Alzheimer's disease brain. Mol Neurobiol 54(1):188–199. https://doi.org/10.1007/s12035-015-9644-x
- 69.
Thomas SN, Soreghan BA, Nistor M, Sarsoza F, Head E, Yang AJ (2005) Reduced neuronal expression of synaptic transmission modulator HNK-1/neural cell adhesion molecule as a potential consequence of amyloid beta-mediated oxidative stress: a proteomic approach. J Neurochem 92(4):705–717. https://doi.org/10.1111/j.1471-4159.2004.02892.x
- 70.
Leshchyns'ka I, Liew HT, Shepherd C, Halliday GM, Stevens CH, Ke YD, Ittner LM, Sytnyk V (2015) Abeta-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun 6:8836. https://doi.org/10.1038/ncomms9836
- 71.
Leshchyns'ka I, Sytnyk V (2016) Synaptic cell adhesion molecules in Alzheimer's disease. Neural Plast 2016:6427537. https://doi.org/10.1155/2016/6427537
- 72.
Low K, Orberger G, Schmitz B, Martini R, Schachner M (1994) The L2/HNK-1 carbohydrate is carried by the myelin associated glycoprotein and sulphated glucuronyl glycolipids in muscle but not cutaneous nerves of adult mice. Eur J Neurosci 6(12):1773–1781. https://doi.org/10.1111/j.1460-9568.1994.tb00570.x
- 73.
Martini R, Schachner M, Brushart TM (1994) The L2/HNK-1 carbohydrate is preferentially expressed by previously motor axon-associated Schwann cells in reinnervated peripheral nerves. J Neurosci 14(11 Pt 2):7180–7191
- 74.
Martini R, Xin Y, Schmitz B, Schachner M (1992) The L2/HNK-1 carbohydrate epitope is involved in the preferential outgrowth of motor neurons on ventral roots and motor nerves. Eur J Neurosci 4(7):628–639. https://doi.org/10.1111/j.1460-9568.1992.tb00171.x
- 75.
Eberhardt KA, Irintchev A, Al-Majed AA, Simova O, Brushart TM, Gordon T, Schachner M (2006) BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair. Exp Neurol 198(2):500–510. https://doi.org/10.1016/j.expneurol.2005.12.018
- 76.
Nieke J, Schachner M (1985) Expression of the neural cell adhesion molecules L1 and N-CAM and their common carbohydrate epitope L2/HNK-1 during development and after transection of the mouse sciatic nerve. Differentiation 30(2):141–151. https://doi.org/10.1111/j.1432-0436.1985.tb00525.x
- 77.
Ma L, Shen HF, Shen YQ, Schachner M (2017) The adhesion molecule-characteristic HNK-1 carbohydrate contributes to functional recovery after spinal cord injury in adult zebrafish. Mol Neurobiol 54(5):3253–3263. https://doi.org/10.1007/s12035-016-9876-4
- 78.
Simon-Haldi M, Mantei N, Franke J, Voshol H, Schachner M (2002) Identification of a peptide mimic of the L2/HNK-1 carbohydrate epitope. J Neurochem 83(6):1380–1388. https://doi.org/10.1046/j.1471-4159.2002.01247.x
- 79.
Simova O, Irintchev A, Mehanna A, Liu J, Dihne M, Bachle D, Sewald N, Loers G, Schachner M (2006) Carbohydrate mimics promote functional recovery after peripheral nerve repair. Ann Neurol 60(4):430–437. https://doi.org/10.1002/ana.20948
- 80.
Irintchev A, Wu MM, Lee HJ, Zhu H, Feng YP, Liu YS, Bernreuther C, Loers G, You SW, Schachner M (2011) Glycomimetic improves recovery after femoral injury in a non-human primate. J Neurotrauma 28(7):1295–1306. https://doi.org/10.1089/neu.2011.1775
- 81.
Mehanna A, Jakovcevski I, Acar A, Xiao M, Loers G, Rougon G, Irintchev A, Schachner M (2010) Polysialic acid glycomimetic promotes functional recovery and plasticity after spinal cord injury in mice. Mol Ther 18(1):34–43. https://doi.org/10.1038/mt.2009.235
- 82.
Sahu S, Li R, Kadeyala PK, Liu S, Schachner M (2018) The human natural killer-1 (HNK-1) glycan mimetic ursolic acid promotes functional recovery after spinal cord injury in mouse. J Nutr Biochem 55:219–228. https://doi.org/10.1016/j.jnutbio.2018.01.016
- 83.
Schmitz B, Peter-Katalinic J, Egge H, Schachner M (1993) Monoclonal antibodies raised against membrane glycoproteins from mouse brain recognize N-linked oligomannosidic glycans. Glycobiology 3(6):609–617. https://doi.org/10.1093/glycob/3.6.609
- 84.
Verbert A, Cacan R (1999) Trafficking of oligomannosides released during N-glycosylation: a clearing mechanism of the rough endoplasmic reticulum. Biochim Biophys Acta 1473(1):137–146. https://doi.org/10.1016/s0304-4165(99)00174-9
- 85.
Horstkorte R, Schachner M, Magyar JP, Vorherr T, Schmitz B (1993) The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. J Cell Biol 121(6):1409–1421. https://doi.org/10.1083/jcb.121.6.1409
- 86.
Kucherer A, Faissner A, Schachner M (1987) The novel carbohydrate epitope L3 is shared by some neural cell adhesion molecules. J Cell Biol 104(6):1597–1602. https://doi.org/10.1083/jcb.104.6.1597
- 87.
Jarvie KR, Booth G, Brown EM, Niznik HB (1989) Glycoprotein nature of dopamine D1 receptors in the brain and parathyroid gland. Mol Pharmacol 36(4):566–574
- 88.
Heller M, von der Ohe M, Kleene R, Mohajeri MH, Schachner M (2003) The immunoglobulin-superfamily molecule basigin is a binding protein for oligomannosidic carbohydrates: an anti-idiotypic approach. J Neurochem 84(3):557–565. https://doi.org/10.1046/j.1471-4159.2003.01537.x
- 89.
Watts JC, Huo H, Bai Y, Ehsani S, Jeon AH, Shi T, Daude N, Lau A, Young R, Xu L, Carlson GA, Williams D, Westaway D, Schmitt-Ulms G (2009) Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. PLoS Pathog 5(10):e1000608. https://doi.org/10.1371/journal.ppat.1000608
- 90.
Yoshimi Y, Yamazaki S, Ikekita M (1999) Developmental changes in Asn-linked neutral oligosaccharides in murine cerebrum. Biochim Biophys Acta 1426(1):69–79. https://doi.org/10.1016/s0304-4165(98)00123-8
- 91.
Fu SC, Gurd JW (1983) Developmental changes in the oligosaccharide composition of synaptic junctional glycoproteins. J Neurochem 41(6):1726–1734. https://doi.org/10.1111/j.1471-4159.1983.tb00886.x
- 92.
Luthl A, Laurent JP, Figurov A, Muller D, Schachner M (1994) Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372(6508):777–779. https://doi.org/10.1038/372777a0
- 93.
Burkhardt-Holm P, Kafitz KW, Guttinger HR, Schachner M (1996) Testosterone elevates expression of tenascin-R and oligomannosidic carbohydrates in developing male zebra finches. J Neurosci Res 46(3):385–392. https://doi.org/10.1002/(SICI)1097-4547(19961101)46:3<385:AID-JNR12>3.0.CO;2-0
- 94.
Schmidt JT, Schachner M (1998) Role for cell adhesion and glycosyl (HNK-1 and oligomannoside) recognition in the sharpening of the regenerating retinotectal projection in goldfish. J Neurobiol 37(4):659–671. https://doi.org/10.1002/(SICI)1097-4695(199812)37:4<659:AID-NEU13>3.0.CO;2-3
- 95.
Rothbard JB, Brackenbury R, Cunningham BA, Edelman GM (1982) Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains. J Biol Chem 257(18):11064–11069
- 96.
Finne J, Finne U, Deagostini-Bazin H, Goridis C (1983) Occurrence of alpha 2–8 linked polysialosyl units in a neural cell adhesion molecule. Biochem Biophys Res Commun 112(2):482–487. https://doi.org/10.1016/0006-291x(83)91490-0
- 97.
McCoy RD, Vimr ER, Troy FA (1985) CMP-NeuNAc:poly-alpha-2,8-sialosyl sialyltransferase and the biosynthesis of polysialosyl units in neural cell adhesion molecules. J Biol Chem 260(23):12695–12699
- 98.
Liedtke S, Geyer H, Wuhrer M, Geyer R, Frank G, Gerardy-Schahn R, Zahringer U, Schachner M (2001) Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology 11(5):373–384
- 99.
Geyer H, Bahr U, Liedtke S, Schachner M, Geyer R (2001) Core structures of polysialylated glycans present in neural cell adhesion molecule from newborn mouse brain. Eur J Biochem 268(24):6587–6599. https://doi.org/10.1046/j.0014-2956.2001.02613.x
- 100.
Scheidegger P, Papay J, Zuber C, Lackie PM, Roth J (1994) Cellular site of synthesis and dynamics of cell surface re-expression of polysialic acid of the neural cell adhesion molecule. Eur J Biochem 225(3):1097–1103. https://doi.org/10.1111/j.1432-1033.1994.1097b.x
- 101.
Nakayama J, Fukuda MN, Fredette B, Ranscht B, Fukuda M (1995) Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci USA 92(15):7031–7035. https://doi.org/10.1073/pnas.92.15.7031
- 102.
Scheidegger EP, Sternberg LR, Roth J, Lowe JB (1995) A human STX cDNA confers polysialic acid expression in mammalian cells. J Biol Chem 270(39):22685–22688. https://doi.org/10.1074/jbc.270.39.22685
- 103.
Angata K, Fukuda M (2003) Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie 85(1–2):195–206. https://doi.org/10.1016/s0300-9084(03)00051-8
- 104.
Angata K, Nakayama J, Fredette B, Chong K, Ranscht B, Fukuda M (1997) Human STX polysialyltransferase forms the embryonic form of the neural cell adhesion molecule. Tissue-specific expression, neurite outgrowth, and chromosomal localization in comparison with another polysialyltransferase, PST. J Biol Chem 272(11):7182–7190. https://doi.org/10.1074/jbc.272.11.7182
- 105.
Thompson MG, Foley DA, Colley KJ (2013) The polysialyltransferases interact with sequences in two domains of the neural cell adhesion molecule to allow its polysialylation. J Biol Chem 288(10):7282–7293. https://doi.org/10.1074/jbc.M112.438374
- 106.
Bhide GP, Prehna G, Ramirez BE, Colley KJ (2017) The polybasic region of the polysialyltransferase ST8Sia-IV binds directly to the neural cell adhesion molecule. NCAM Biochem 56(10):1504–1517. https://doi.org/10.1021/acs.biochem.6b01221
- 107.
Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer P, Scheff S et al (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367(6462):455–459. https://doi.org/10.1038/367455a0
- 108.
James WM, Agnew WS (1987) Multiple oligosaccharide chains in the voltage-sensitive Na channel from electrophorus electricus: evidence for alpha-2,8-linked polysialic acid. Biochem Biophys Res Commun 148(2):817–826. https://doi.org/10.1016/0006-291x(87)90949-1
- 109.
Zuber C, Lackie PM, Catterall WA, Roth J (1992) Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N-CAM in adult rat brain. J Biol Chem 267(14):9965–9971
- 110.
Galuska SP, Rollenhagen M, Kaup M, Eggers K, Oltmann-Norden I, Schiff M, Hartmann M, Weinhold B, Hildebrandt H, Geyer R, Muhlenhoff M, Geyer H (2010) Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci USA 107(22):10250–10255. https://doi.org/10.1073/pnas.0912103107
- 111.
Curreli S, Arany Z, Gerardy-Schahn R, Mann D, Stamatos NM (2007) Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J Biol Chem 282(42):30346–30356. https://doi.org/10.1074/jbc.M702965200
- 112.
Hoffman S, Edelman GM (1983) Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci USA 80(18):5762–5766
- 113.
Rutishauser U, Watanabe M, Silver J, Troy FA, Vimr ER (1985) Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase. J Cell Biol 101(5 Pt 1):1842–1849. https://doi.org/10.1083/jcb.101.5.1842
- 114.
Storms SD, Rutishauser U (1998) A role for polysialic acid in neural cell adhesion molecule heterophilic binding to proteoglycans. J Biol Chem 273(42):27124–27129. https://doi.org/10.1074/jbc.273.42.27124
- 115.
Kanato Y, Kitajima K, Sato C (2008) Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology 18(12):1044–1053. https://doi.org/10.1093/glycob/cwn084
- 116.
Muller D, Djebbara-Hannas Z, Jourdain P, Vutskits L, Durbec P, Rougon G, Kiss JZ (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci USA 97(8):4315–4320
- 117.
Vaithianathan T, Matthias K, Bahr B, Schachner M, Suppiramaniam V, Dityatev A, Steinhauser C (2004) Neural cell adhesion molecule-associated polysialic acid potentiates alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor currents. J Biol Chem 279(46):47975–47984. https://doi.org/10.1074/jbc.M407138200
- 118.
Hammond MS, Sims C, Parameshwaran K, Suppiramaniam V, Schachner M, Dityatev A (2006) Neural cell adhesion molecule-associated polysialic acid inhibits NR2B-containing N-methyl-d-aspartate receptors and prevents glutamate-induced cell death. J Biol Chem 281(46):34859–34869. https://doi.org/10.1074/jbc.M602568200
- 119.
Kochlamazashvili G, Senkov O, Grebenyuk S, Robinson C, Xiao MF, Stummeyer K, Gerardy-Schahn R, Engel AK, Feig L, Semyanov A, Suppiramaniam V, Schachner M, Dityatev A (2010) Neural cell adhesion molecule-associated polysialic acid regulates synaptic plasticity and learning by restraining the signaling through GluN2B-containing NMDA receptors. J Neurosci 30(11):4171–4183. https://doi.org/10.1523/JNEUROSCI.5806-09.2010
- 120.
Isomura R, Kitajima K, Sato C (2011) Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J Biol Chem 286(24):21535–21545. https://doi.org/10.1074/jbc.M111.221143
- 121.
Joliot AH, Triller A, Volovitch M, Pernelle C, Prochiantz A (1991) alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol 3(11):1121–1134
- 122.
Prochiantz A, Joliot A (2003) Can transcription factors function as cell-cell signalling molecules? Nat Rev Mol Cell Biol 4(10):814–819. https://doi.org/10.1038/nrm1227
- 123.
Westphal N, Kleene R, Lutz D, Theis T, Schachner M (2016) Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain. Mol Cell Neurosci 74:114–127. https://doi.org/10.1016/j.mcn.2016.05.003
- 124.
Westphal N, Loers G, Lutz D, Theis T, Kleene R, Schachner M (2017) Generation and intracellular trafficking of a polysialic acid-carrying fragment of the neural cell adhesion molecule NCAM to the cell nucleus. Sci Rep 7(1):8622. https://doi.org/10.1038/s41598-017-09468-8
- 125.
Kuhnle A, Lutteke T, Bornhofft KF, Galuska SP (2019) Polysialic acid modulates the binding of external lactoferrin in neutrophil extracellular traps. Biology. https://doi.org/10.3390/biology8020020
- 126.
Theis T, Mishra B, von der Ohe M, Loers G, Prondzynski M, Pless O, Blackshear PJ, Schachner M, Kleene R (2013) Functional role of the interaction between polysialic acid and myristoylated alanine-rich C kinase substrate at the plasma membrane. J Biol Chem 288(9):6726–6742. https://doi.org/10.1074/jbc.M112.444034
- 127.
Nakano T, Sugawara M, Kawakami H (2001) Sialic acid in human milk: composition and functions. Acta Paediatr Taiwan 42(1):11–17
- 128.
Wang B, Hu H, Yu B (2006) Molecular characterization of pig ST8Sia IV–a critical gene for the formation of neural cell adhesion molecule and its response to sialic acid supplement in piglets. Nutr Neurosci 9(3–4):147–154. https://doi.org/10.1080/10284150600903594
- 129.
Seki T, Arai Y (1991) Expression of highly polysialylated NCAM in the neocortex and piriform cortex of the developing and the adult rat. Anat Embryol 184(4):395–401. https://doi.org/10.1007/bf00957900
- 130.
Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80(3):129–164. https://doi.org/10.1016/j.pneurobio.2006.08.003
- 131.
Prodromidou K, Papastefanaki F, Sklaviadis T, Matsas R (2014) Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells. Stem Cells 32(6):1674–1687. https://doi.org/10.1002/stem.1663
- 132.
Huang R, Yuan DJ, Li S, Liang XS, Gao Y, Lan XY, Qin HM, Ma YF, Xu GY, Schachner M, Sytnyk V, Boltze J, Ma QH, Li S (2020) NCAM regulates temporal specification of neural progenitor cells via profilin2 during corticogenesis. J Cell Biol. https://doi.org/10.1083/jcb.201902164
- 133.
Aaron LI, Chesselet MF (1989) Heterogeneous distribution of polysialylated neuronal-cell adhesion molecule during post-natal development and in the adult: an immunohistochemical study in the rat brain. Neuroscience 28(3):701–710. https://doi.org/10.1016/0306-4522(89)90015-8
- 134.
Hekmat A, Bitter-Suermann D, Schachner M (1990) Immunocytological localization of the highly polysialylated form of the neural cell adhesion molecule during development of the murine cerebellar cortex. J Comp Neurol 291(3):457–467. https://doi.org/10.1002/cne.902910311
- 135.
Chung WW, Lagenaur CF, Yan YM, Lund JS (1991) Developmental expression of neural cell adhesion molecules in the mouse neocortex and olfactory bulb. J Comp Neurol 314(2):290–305. https://doi.org/10.1002/cne.903140207
- 136.
Ong E, Nakayama J, Angata K, Reyes L, Katsuyama T, Arai Y, Fukuda M (1998) Developmental regulation of polysialic acid synthesis in mouse directed by two polysialyltransferases, PST and STX. Glycobiology 8(4):415–424. https://doi.org/10.1093/glycob/8.4.415
- 137.
van den Pol AN, Kim WT (1993) NILE/L1 and NCAM-polysialic acid expression on growing axons of isolated neurons. J Comp Neurol 332(2):237–257. https://doi.org/10.1002/cne.903320208
- 138.
Ono K, Tomasiewicz H, Magnuson T, Rutishauser U (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13(3):595–609. https://doi.org/10.1016/0896-6273(94)90028-0
- 139.
Seki T, Rutishauser U (1998) Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J Neurosci 18(10):3757–3766
- 140.
Vutskits L, Gascon E, Zgraggen E, Kiss JZ (2006) The polysialylated neural cell adhesion molecule promotes neurogenesis in vitro. Neurochem Res 31(2):215–225. https://doi.org/10.1007/s11064-005-9021-7
- 141.
Yang P, Major D, Rutishauser U (1994) Role of charge and hydration in effects of polysialic acid on molecular interactions on and between cell membranes. J Biol Chem 269(37):23039–23044
- 142.
Weinhold B, Seidenfaden R, Rockle I, Muhlenhoff M, Schertzinger F, Conzelmann S, Marth JD, Gerardy-Schahn R, Hildebrandt H (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem 280(52):42971–42977. https://doi.org/10.1074/jbc.M511097200
- 143.
Angata K, Huckaby V, Ranscht B, Terskikh A, Marth JD, Fukuda M (2007) Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol Cell Biol 27(19):6659–6668. https://doi.org/10.1128/MCB.00205-07
- 144.
Theodosis DT, Rougon G, Poulain DA (1991) Retention of embryonic features by an adult neuronal system capable of plasticity: polysialylated neural cell adhesion molecule in the hypothalamo-neurohypophysial system. Proc Natl Acad Sci USA 88(13):5494–5498. https://doi.org/10.1073/pnas.88.13.5494
- 145.
Seki T, Arai Y (1991) The persistent expression of a highly polysialylated NCAM in the dentate gyrus of the adult rat. Neurosci Res 12(4):503–513. https://doi.org/10.1016/s0168-0102(09)80003-5
- 146.
Schuster T, Krug M, Stalder M, Hackel N, Gerardy-Schahn R, Schachner M (2001) Immunoelectron microscopic localization of the neural recognition molecules L1, NCAM, and its isoform NCAM180, the NCAM-associated polysialic acid, beta1 integrin and the extracellular matrix molecule tenascin-R in synapses of the adult rat hippocampus. J Neurobiol 49(2):142–158. https://doi.org/10.1002/neu.1071
- 147.
Seki T, Arai Y (1999) Different polysialic acid-neural cell adhesion molecule expression patterns in distinct types of mossy fiber boutons in the adult hippocampus. J Comp Neurol 410(1):115–125. https://doi.org/10.1002/(sici)1096-9861(19990719)410:1<115:aid-cne10>3.0.co;2-c
- 148.
Doyle E, Nolan PM, Bell R, Regan CM (1992) Hippocampal NCAM180 transiently increases sialylation during the acquisition and consolidation of a passive avoidance response in the adult rat. J Neurosci Res 31(3):513–523. https://doi.org/10.1002/jnr.490310315
- 149.
Fox GB, O'Connell AW, Murphy KJ, Regan CM (1995) Memory consolidation induces a transient and time-dependent increase in the frequency of neural cell adhesion molecule polysialylated cells in the adult rat hippocampus. J Neurochem 65(6):2796–2799. https://doi.org/10.1046/j.1471-4159.1995.65062796.x
- 150.
O'Connell AW, Fox GB, Barry T, Murphy KJ, Fichera G, Foley AG, Kelly J, Regan CM (1997) Spatial learning activates neural cell adhesion molecule polysialylation in a corticohippocampal pathway within the medial temporal lobe. J Neurochem 68(6):2538–2546. https://doi.org/10.1046/j.1471-4159.1997.68062538.x
- 151.
Wang C, Pralong WF, Schulz MF, Rougon G, Aubry JM, Pagliusi S, Robert A, Kiss JZ (1996) Functional N-methyl-d-aspartate receptors in O-2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration. J Cell Biol 135(6 Pt 1):1565–1581. https://doi.org/10.1083/jcb.135.6.1565
- 152.
Rodriguez JJ, Dallerac GM, Tabuchi M, Davies HA, Colyer FM, Stewart MG, Doyere V (2008) N-methyl-d-aspartate receptor independent changes in expression of polysialic acid-neural cell adhesion molecule despite blockade of homosynaptic long-term potentiation and heterosynaptic long-term depression in the awake freely behaving rat dentate gyrus. Neuron Glia Biol 4(3):169–178. https://doi.org/10.1017/S1740925X09990159
- 153.
Gallagher HC, Murphy KJ, Foley AG, Regan CM (2001) Protein kinase C delta regulates neural cell adhesion molecule polysialylation state in the rat brain. J Neurochem 77(2):425–434. https://doi.org/10.1046/j.1471-4159.2001.00235.x
- 154.
Guiraudie-Capraz G, Chaillan FA, Truchet B, Franc JL, Mourre C, Roman FS (2011) Increase in polysialyltransferase gene expression following LTP in adult rat dentate gyrus. Hippocampus 21(11):1180–1189. https://doi.org/10.1002/hipo.20835
- 155.
Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M (1996) The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J Neurosci Res 45(2):143–152. https://doi.org/10.1002/(SICI)1097-4547(19960715)45:2<143:AID-JNR6>3.0.CO;2-A
- 156.
Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17(3):413–422. https://doi.org/10.1016/s0896-6273(00)80174-9
- 157.
Markram K, Gerardy-Schahn R, Sandi C (2007) Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neuroscience 144(3):788–796. https://doi.org/10.1016/j.neuroscience.2006.10.024
- 158.
Eckhardt M, Bukalo O, Chazal G, Wang L, Goridis C, Schachner M, Gerardy-Schahn R, Cremer H, Dityatev A (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci 20(14):5234–5244
- 159.
Angata K, Long JM, Bukalo O, Lee W, Dityatev A, Wynshaw-Boris A, Schachner M, Fukuda M, Marth JD (2004) Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J Biol Chem 279(31):32603–32613. https://doi.org/10.1074/jbc.M403429200
- 160.
Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24(42):9372–9382. https://doi.org/10.1523/JNEUROSCI.1702-04.2004
- 161.
Brennaman LH, Zhang X, Guan H, Triplett JW, Brown A, Demyanenko GP, Manis PB, Landmesser L, Maness PF (2013) Polysialylated NCAM and ephrinA/EphA regulate synaptic development of GABAergic interneurons in prefrontal cortex. Cereb Cortex 23(1):162–177. https://doi.org/10.1093/cercor/bhr392
- 162.
Guirado R, Perez-Rando M, Sanchez-Matarredona D, Castillo-Gomez E, Liberia T, Rovira-Esteban L, Varea E, Crespo C, Blasco-Ibanez JM, Nacher J (2014) The dendritic spines of interneurons are dynamic structures influenced by PSA-NCAM expression. Cereb Cortex 24(11):3014–3024. https://doi.org/10.1093/cercor/bht156
- 163.
Shen H, Watanabe M, Tomasiewicz H, Rutishauser U, Magnuson T, Glass JD (1997) Role of neural cell adhesion molecule and polysialic acid in mouse circadian clock function. J Neurosci 17(13):5221–5229
- 164.
Glass JD, Shen H, Fedorkova L, Chen L, Tomasiewicz H, Watanabe M (2000) Polysialylated neural cell adhesion molecule modulates photic signaling in the mouse suprachiasmatic nucleus. Neurosci Lett 280(3):207–210. https://doi.org/10.1016/s0304-3940(00)00786-2
- 165.
Nothias F, Vernier P, von Boxberg Y, Mirman S, Vincent JD (1997) Modulation of NCAM polysialylation is associated with morphofunctional modifications in the hypothalamo-neurohypophysial system during lactation. Eur J Neurosci 9(8):1553–1565. https://doi.org/10.1111/j.1460-9568.1997.tb01513.x
- 166.
Theodosis DT, Bonhomme R, Vitiello S, Rougon G, Poulain DA (1999) Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. J Neurosci 19(23):10228–10236
- 167.
Muller D, Stoppini L, Wang C, Kiss JZ (1994) A role for polysialylated neural cell adhesion molecule in lesion-induced sprouting in hippocampal organotypic cultures. Neuroscience 61(3):441–445. https://doi.org/10.1016/0306-4522(94)90424-3
- 168.
Szele FG, Chesselet MF (1996) Cortical lesions induce an increase in cell number and PSA-NCAM expression in the subventricular zone of adult rats. J Comp Neurol 368(3):439–454. https://doi.org/10.1002/(SICI)1096-9861(19960506)368:3<439:AID-CNE9>3.0.CO;2-6
- 169.
Franz CK, Rutishauser U, Rafuse VF (2005) Polysialylated neural cell adhesion molecule is necessary for selective targeting of regenerating motor neurons. J Neurosci 25(8):2081–2091. https://doi.org/10.1523/JNEUROSCI.4880-04.2005
- 170.
El Maarouf A, Petridis AK, Rutishauser U (2006) Use of polysialic acid in repair of the central nervous system. Proc Natl Acad Sci USA 103(45):16989–16994. https://doi.org/10.1073/pnas.0608036103
- 171.
Zhang Y, Zhang X, Yeh J, Richardson P, Bo X (2007) Engineered expression of polysialic acid enhances Purkinje cell axonal regeneration in L1/GAP-43 double transgenic mice. Eur J Neurosci 25(2):351–361. https://doi.org/10.1111/j.1460-9568.2007.05311.x
- 172.
Fewou SN, Ramakrishnan H, Bussow H, Gieselmann V, Eckhardt M (2007) Down-regulation of polysialic acid is required for efficient myelin formation. J Biol Chem 282(22):16700–16711. https://doi.org/10.1074/jbc.M610797200
- 173.
Mikkonen M, Soininen H, Kalvianen R, Tapiola T, Ylinen A, Vapalahti M, Paljarvi L, Pitkanen A (1998) Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol 44(6):923–934. https://doi.org/10.1002/ana.410440611
- 174.
Pekcec A, Fuest C, Muhlenhoff M, Gerardy-Schahn R, Potschka H (2008) Targeting epileptogenesis-associated induction of neurogenesis by enzymatic depolysialylation of NCAM counteracts spatial learning dysfunction but fails to impact epilepsy development. J Neurochem 105(2):389–400. https://doi.org/10.1111/j.1471-4159.2007.05172.x
- 175.
Mikkonen M, Soininen H, Tapiola T, Alafuzoff I, Miettinen R (1999) Hippocampal plasticity in Alzheimer's disease: changes in highly polysialylated NCAM immunoreactivity in the hippocampal formation. Eur J Neurosci 11(5):1754–1764
- 176.
Murray HC, Swanson MEV, Dieriks BV, Turner C, Faull RLM, Curtis MA (2018) Neurochemical characterization of PSA-NCAM(+) cells in the human brain and phenotypic quantification in Alzheimer's disease entorhinal cortex. Neuroscience 372:289–303. https://doi.org/10.1016/j.neuroscience.2017.12.019
- 177.
Yoshimi K, Ren YR, Seki T, Yamada M, Ooizumi H, Onodera M, Saito Y, Murayama S, Okano H, Mizuno Y, Mochizuki H (2005) Possibility for neurogenesis in substantia nigra of parkinsonian brain. Ann Neurol 58(1):31–40. https://doi.org/10.1002/ana.20506
- 178.
Sato C, Hane M (2018) Mental disorders and an acidic glycan-from the perspective of polysialic acid (PSA/polySia) and the synthesizing enzyme, ST8SIA2. Glycoconj J 35(4):353–373. https://doi.org/10.1007/s10719-018-9832-9
- 179.
Mehanna A, Mishra B, Kurschat N, Schulze C, Bian S, Loers G, Irintchev A, Schachner M (2009) Polysialic acid glycomimetics promote myelination and functional recovery after peripheral nerve injury in mice. Brain 132(Pt 6):1449–1462. https://doi.org/10.1093/brain/awp128
- 180.
Loers G, Astafiev S, Hapiak Y, Saini V, Mishra B, Gul S, Kaur G, Schachner M, Theis T (2017) The polysialic acid mimetics idarubicin and irinotecan stimulate neuronal survival and neurite outgrowth and signal via protein kinase C. J Neurochem 142(3):392–406. https://doi.org/10.1111/jnc.14076
- 181.
Saini V, Lutz D, Kataria H, Kaur G, Schachner M, Loers G (2016) The polysialic acid mimetics 5-nonyloxytryptamine and vinorelbine facilitate nervous system repair. Sci Rep 6:26927. https://doi.org/10.1038/srep26927
- 182.
Bushman J, Mishra B, Ezra M, Gul S, Schulze C, Chaudhury S, Ripoll D, Wallqvist A, Kohn J, Schachner M, Loers G (2014) Tegaserod mimics the neurostimulatory glycan polysialic acid and promotes nervous system repair. Neuropharmacology 79:456–466. https://doi.org/10.1016/j.neuropharm.2013.09.014
- 183.
Clausen J, Rosenkast P (1962) Isolation of acid mucopolysaccharides of human brain. J Neurochem 9:393–398. https://doi.org/10.1111/j.1471-4159.1962.tb09465.x
- 184.
Abood LG, Abul-Haj SK (1956) Histochemistry and characterization of hyaluronic acid in axons of peripheral nerve. J Neurochem 1(2):119–125. https://doi.org/10.1111/j.1471-4159.1956.tb12062.x
- 185.
Singh M, Bachhawat BK (1965) The distribution and variation with age of different uronic acid-containing mucopolysaccharides in brain. J Neurochem 12(6):519–525. https://doi.org/10.1111/j.1471-4159.1965.tb06779.x
- 186.
Singh M, Chandrasekaran EV, Cherian R, Bachhawat BK (1969) Isolation and characterization of glycosaminoglycans in brain of different species. J Neurochem 16(7):1157–1162. https://doi.org/10.1111/j.1471-4159.1969.tb05961.x
- 187.
Brandt AE, Distler J, Jourdian GW (1969) Biosynthesis of the chondroitin sulfate-protein linkage region: purification and properties of a glucuronosyltransferase from embryonic chick brain. Proc Natl Acad Sci USA 64(1):374–380. https://doi.org/10.1073/pnas.64.1.374
- 188.
Kusche-Gullberg M, Kjellen L (2003) Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 13(5):605–611. https://doi.org/10.1016/j.sbi.2003.08.002
- 189.
Masu M (2016) Proteoglycans and axon guidance: a new relationship between old partners. J Neurochem 139(Suppl 2):58–75. https://doi.org/10.1111/jnc.13508
- 190.
Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277(51):49175–49185. https://doi.org/10.1074/jbc.M205131200
- 191.
Zhang P, Lu H, Peixoto RT, Pines MK, Ge Y, Oku S, Siddiqui TJ, Xie Y, Wu W, Archer-Hartmann S, Yoshida K, Tanaka KF, Aricescu AR, Azadi P, Gordon MD, Sabatini BL, Wong ROL, Craig AM (2018) Heparan sulfate organizes neuronal synapses through neurexin partnerships. Cell 174(6):1450–1464. https://doi.org/10.1016/j.cell.2018.07.002
- 192.
Werz W, Fischer G, Schachner M (1985) Glycosaminoglycans of rat cerebellum: II. A developmental study. J Neurochem 44(3):907–910. https://doi.org/10.1111/j.1471-4159.1985.tb12902.x
- 193.
Balasubramanian AS, Bachhawat BK (1964) Enzymic transfer of sulphate from 3'-phosphoadenosine 5'-phosphosulphate to mucopolysaccharides in rat brain. J Neurochem 11:877–885. https://doi.org/10.1111/j.1471-4159.1964.tb06739.x
- 194.
Yu P, Pearson CS, Geller HM (2018) Flexible roles for proteoglycan sulfation and receptor signaling. Trends Neurosci 41(1):47–61. https://doi.org/10.1016/j.tins.2017.10.005
- 195.
Kalus I, Rohn S, Puvirajesinghe TM, Guimond SE, Eyckerman-Kolln PJ, Ten Dam G, van Kuppevelt TH, Turnbull JE, Dierks T (2015) Sulf1 and Sulf2 differentially modulate heparan sulfate proteoglycan sulfation during postnatal cerebellum development: evidence for neuroprotective and neurite outgrowth promoting functions. PLoS ONE 10(10):e0139853. https://doi.org/10.1371/journal.pone.0139853
- 196.
Kalus I, Salmen B, Viebahn C, von Figura K, Schmitz D, D'Hooge R, Dierks T (2009) Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity. J Cell Mol Med 13(11–12):4505–4521. https://doi.org/10.1111/j.1582-4934.2008.00558.x
- 197.
Miyata S, Kitagawa H (2017) Formation and remodeling of the brain extracellular matrix in neural plasticity: roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 10:2420–2434. https://doi.org/10.1016/j.bbagen.2017.06.010
- 198.
Vos J, Kuriyama K, Roberts E (1969) Distribution of acid mucopolysaccharides in subcellular fractions of mouse brain. Brain Res 12(1):172–179. https://doi.org/10.1016/0006-8993(69)90064-x
- 199.
Custod JT, Young IJ (1968) Cat brain mucopolysaccharides and their in vivo hyaluronidase digestion. J Neurochem 15(8):809–813. https://doi.org/10.1111/j.1471-4159.1968.tb10326.x
- 200.
de Vivo L, Landi S, Panniello M, Baroncelli L, Chierzi S, Mariotti L, Spolidoro M, Pizzorusso T, Maffei L, Ratto GM (2013) Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex. Nat Commun 4:1484. https://doi.org/10.1038/ncomms2491
- 201.
Miyata S, Komatsu Y, Yoshimura Y, Taya C, Kitagawa H (2012) Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat Neurosci 15(3):414–422. https://doi.org/10.1038/nn.3023
- 202.
Wegrzyn G, Jakobkiewicz-Banecka J, Narajczyk M, Wisniewski A, Piotrowska E, Gabig-Ciminska M, Kloska A, Slominska-Wojewodzka M, Korzon-Burakowska A, Wegrzyn A (2010) Why are behaviors of children suffering from various neuronopathic types of mucopolysaccharidoses different? Med Hypotheses 75(6):605–609. https://doi.org/10.1016/j.mehy.2010.07.044
- 203.
Bigger BW, Begley DJ, Virgintino D, Pshezhetsky AV (2018) Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol Genet Metab 125(4):322–331. https://doi.org/10.1016/j.ymgme.2018.08.003
- 204.
Sethi MK, Zaia J (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409(2):379–394. https://doi.org/10.1007/s00216-016-9900-6
- 205.
Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72(6):455–482. https://doi.org/10.1111/j.1747-0285.2008.00741.x
- 206.
Dyck SM, Karimi-Abdolrezaee S (2015) Chondroitin sulfate proteoglycans: key modulators in the developing and pathologic central nervous system. Exp Neurol 269:169–187. https://doi.org/10.1016/j.expneurol.2015.04.006
- 207.
Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12(7):897–904. https://doi.org/10.1038/nn.2338
- 208.
Mohan V, Wyatt EV, Gotthard I, Phend KD, Diestel S, Duncan BW, Weinberg RJ, Tripathy A, Maness PF (2018) Neurocan inhibits semaphorin 3F induced dendritic spine remodeling through NrCAM in cortical neurons. Front Cell Neurosci 12:346. https://doi.org/10.3389/fncel.2018.00346
- 209.
Van't Spijker HM, Rowlands D, Rossier J, Haenzi B, Fawcett JW, Kwok JCF (2019) Neuronal pentraxin 2 binds PNNs and enhances PNN formation. Neural Plast 2019:6804575. https://doi.org/10.1155/2019/6804575
- 210.
Chandrasekaran EV, Bachhawat BK (1969) Isolation and characterization of glycosaminoglycans in peripheral nerve and spinal cord of monkey. J Neurochem 16(11):1529–1532. https://doi.org/10.1111/j.1471-4159.1969.tb09908.x
- 211.
Massey JM, Amps J, Viapiano MS, Matthews RT, Wagoner MR, Whitaker CM, Alilain W, Yonkof AL, Khalyfa A, Cooper NG, Silver J, Onifer SM (2008) Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 209(2):426–445. https://doi.org/10.1016/j.expneurol.2007.03.029
- 212.
Bradbury EJ, Carter LM (2011) Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 84(4–5):306–316. https://doi.org/10.1016/j.brainresbull.2010.06.015
- 213.
Igarashi M, Takeuchi K, Sugiyama S (2018) Roles of CSGalNAcT1, a key enzyme in regulation of CS synthesis, in neuronal regeneration and plasticity. Neurochem Int 119:77–83. https://doi.org/10.1016/j.neuint.2017.10.001
- 214.
Rost S, Akyuz N, Martinovic T, Huckhagel T, Jakovcevski I, Schachner M (2016) Germline ablation of dermatan-4O-sulfotransferase1 reduces regeneration after mouse spinal cord injury. Neuroscience 312:74–85. https://doi.org/10.1016/j.neuroscience.2015.11.013
- 215.
Akyuz N, Rost S, Mehanna A, Bian S, Loers G, Oezen I, Mishra B, Hoffmann K, Guseva D, Laczynska E, Irintchev A, Jakovcevski I, Schachner M (2013) Dermatan 4-O-sulfotransferase1 ablation accelerates peripheral nerve regeneration. Exp Neurol 247:517–530. https://doi.org/10.1016/j.expneurol.2013.01.025
- 216.
Loers G, Liao Y, Hu C, Xue W, Shen H, Zhao W, Schachner M (2019) Identification and characterization of synthetic chondroitin-4-sulfate binding peptides in neuronal functions. Sci Rep 9(1):1064. https://doi.org/10.1038/s41598-018-37685-2
- 217.
Butterfield KC, Caplan M, Panitch A (2010) Identification and sequence composition characterization of chondroitin sulfate-binding peptides through peptide array screening. Biochemistry 49(7):1549–1555. https://doi.org/10.1021/bi9021044
- 218.
Butterfield KC, Conovaloff A, Caplan M, Panitch A (2010) Chondroitin sulfate-binding peptides block chondroitin 6-sulfate inhibition of cortical neurite growth. Neurosci Lett 478(2):82–87. https://doi.org/10.1016/j.neulet.2010.04.070
- 219.
Domino SE, Zhang L, Gillespie PJ, Saunders TL, Lowe JB (2001) Deficiency of reproductive tract alpha(1,2)fucosylated glycans and normal fertility in mice with targeted deletions of the FUT1 or FUT2 alpha(1,2)fucosyltransferase locus. Mol Cell Biol 21(24):8336–8345. https://doi.org/10.1128/MCB.21.24.8336-8345.2001
- 220.
Smalla KH, Angenstein F, Richter K, Gundelfinger ED, Staak S (1998) Identification of fucose alpha(1–2) galactose epitope-containing glycoproteins from rat hippocampus. NeuroReport 9(5):813–817. https://doi.org/10.1097/00001756-199803300-00009
- 221.
Kalovidouris SA, Gama CI, Lee LW, Hsieh-Wilson LC (2005) A role for fucose alpha(1–2) galactose carbohydrates in neuronal growth. J Am Chem Soc 127(5):1340–1341. https://doi.org/10.1021/ja044631v
- 222.
Krug M, Jork R, Reymann K, Wagner M, Matthies H (1991) The amnesic substance 2-deoxy-d-galactose suppresses the maintenance of hippocampal LTP. Brain Res 540(1–2):237–242. https://doi.org/10.1016/0006-8993(91)90513-u
- 223.
Rose SP, Jork R (1987) Long-term memory formation in chicks is blocked by 2-deoxygalactose, a fucose analog. Behav Neural Biol 48(2):246–258
- 224.
Tiunova AA, Anokhin KV, Rose SP (1998) Two critical periods of protein and glycoprotein synthesis in memory consolidation for visual categorization learning in chicks. Learn Mem 4(5):401–410
- 225.
Kleene R, Yang H, Kutsche M, Schachner M (2001) The neural recognition molecule L1 is a sialic acid-binding lectin for CD24, which induces promotion and inhibition of neurite outgrowth. J Biol Chem 276(24):21656–21663. https://doi.org/10.1074/jbc.M101790200
- 226.
Vinson M, van der Merwe PA, Kelm S, May A, Jones EY, Crocker PR (1996) Characterization of the sialic acid-binding site in sialoadhesin by site-directed mutagenesis. J Biol Chem 271(16):9267–9272. https://doi.org/10.1074/jbc.271.16.9267
- 227.
Vinson M, Strijbos PJ, Rowles A, Facci L, Moore SE, Simmons DL, Walsh FS (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J Biol Chem 276(23):20280–20285. https://doi.org/10.1074/jbc.M100345200
- 228.
Bartels MF, Winterhalter PR, Yu J, Liu Y, Lommel M, Mohrlen F, Hu H, Feizi T, Westerlind U, Ruppert T, Strahl S (2016) Protein O-mannosylation in the murine brain: occurrence of mono-O-mannosyl glycans and identification of new substrates. PLoS ONE 11(11):e0166119. https://doi.org/10.1371/journal.pone.0166119
- 229.
Lommel M, Strahl S (2009) Protein O-mannosylation: conserved from bacteria to humans. Glycobiology 19(8):816–828. https://doi.org/10.1093/glycob/cwp066
- 230.
Vester-Christensen MB, Halim A, Joshi HJ, Steentoft C, Bennett EP, Levery SB, Vakhrushev SY, Clausen H (2013) Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. Proc Natl Acad Sci USA 110(52):21018–21023. https://doi.org/10.1073/pnas.1313446110
- 231.
Praissman JL, Willer T, Sheikh MO, Toi A, Chitayat D, Lin YY, Lee H, Stalnaker SH, Wang S, Prabhakar PK, Nelson SF, Stemple DL, Moore SA, Moremen KW, Campbell KP, Wells L (2016) The functional O-mannose glycan on alpha-dystroglycan contains a phospho-ribitol primed for matriglycan addition. eLife. https://doi.org/10.7554/eLife.14473
- 232.
Dwyer CA, Baker E, Hu H, Matthews RT (2012) RPTPzeta/phosphacan is abnormally glycosylated in a model of muscle-eye-brain disease lacking functional POMGnT1. Neuroscience 220:47–61. https://doi.org/10.1016/j.neuroscience.2012.06.026
- 233.
Bleckmann C, Geyer H, Lieberoth A, Splittstoesser F, Liu Y, Feizi T, Schachner M, Kleene R, Reinhold V, Geyer R (2009) O-glycosylation pattern of CD24 from mouse brain. Biol Chem 390(7):627–645. https://doi.org/10.1515/BC.2009.044
- 234.
Pacharra S, Hanisch FG, Breloy I (2012) Neurofascin 186 is O-mannosylated within and outside of the mucin domain. J Proteome Res 11(8):3955–3964. https://doi.org/10.1021/pr200996y
- 235.
Pacharra S, Hanisch FG, Muhlenhoff M, Faissner A, Rauch U, Breloy I (2013) The lecticans of mammalian brain perineural net are O-mannosylated. J Proteome Res 12(4):1764–1771. https://doi.org/10.1021/pr3011028
- 236.
Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, Kanazawa I, Kobata A, Endo T (1997) Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J Biol Chem 272(4):2156–2162. https://doi.org/10.1074/jbc.272.4.2156
- 237.
Michele DE, Barresi R, Kanagawa M, Saito F, Cohn RD, Satz JS, Dollar J, Nishino I, Kelley RI, Somer H, Straub V, Mathews KD, Moore SA, Campbell KP (2002) Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418(6896):417–422. https://doi.org/10.1038/nature00837
- 238.
Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119(Pt 2):199–207. https://doi.org/10.1242/jcs.02814
- 239.
Kizuka Y, Taniguchi N (2018) Neural functions of bisecting GlcNAc. Glycoconj J 35(4):345–351. https://doi.org/10.1007/s10719-018-9829-4
- 240.
Wuhrer M, Geyer H, von der Ohe M, Gerardy-Schahn R, Schachner M, Geyer R (2003) Localization of defined carbohydrate epitopes in bovine polysialylated NCAM. Biochimie 85(1–2):207–218. https://doi.org/10.1016/s0300-9084(03)00043-9
- 241.
Shigeta M, Shibukawa Y, Ihara H, Miyoshi E, Taniguchi N, Gu J (2006) Beta1,4-N-Acetylglucosaminyltransferase III potentiates beta1 integrin-mediated neuritogenesis induced by serum deprivation in Neuro2a cells. Glycobiology 16(6):564–571. https://doi.org/10.1093/glycob/cwj100
- 242.
Bhattacharyya R, Bhaumik M, Raju TS, Stanley P (2002) Truncated, inactive N-acetylglucosaminyltransferase III (GlcNAc-TIII) induces neurological and other traits absent in mice that lack GlcNAc-TIII. J Biol Chem 277(29):26300–26309. https://doi.org/10.1074/jbc.M202276200
- 243.
Gu J, Zhao Y, Isaji T, Shibukawa Y, Ihara H, Takahashi M, Ikeda Y, Miyoshi E, Honke K, Taniguchi N (2004) Beta 1,4-N-acetylglucosaminyltransferase III down-regulates neurite outgrowth induced by costimulation of epidermal growth factor and integrins through the Ras/ERK signaling pathway in PC12 cells. Glycobiology 14(2):177–186. https://doi.org/10.1093/glycob/cwh016
- 244.
Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido TC, Nakano M, Yamaguchi Y, Hashimoto Y, Staufenbiel M, Hatsuta H, Murayama S, Manya H, Endo T, Taniguchi N (2015) An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med 7(2):175–189. https://doi.org/10.15252/emmm.201404438
- 245.
Akasaka-Manya K, Manya H, Sakurai Y, Wojczyk BS, Kozutsumi Y, Saito Y, Taniguchi N, Murayama S, Spitalnik SL, Endo T (2010) Protective effect of N-glycan bisecting GlcNAc residues on beta-amyloid production in Alzheimer's disease. Glycobiology 20(1):99–106. https://doi.org/10.1093/glycob/cwp152
- 246.
Kizuka Y, Nakano M, Kitazume S, Saito T, Saido TC, Taniguchi N (2016) Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J 473(1):21–30. https://doi.org/10.1042/BJ20150607
- 247.
Schedin-Weiss S, Gaunitz S, Sui P, Chen Q, Haslam SM, Blennow K, Winblad B, Dell A, Tjernberg LO (2019) Glycan biomarkers for Alzheimer disease correlate with T-tau and P-tau in cerebrospinal fluid in subjective cognitive impairment. FEBS J. https://doi.org/10.1111/febs.15197
- 248.
Allam H, Aoki K, Benigno BB, McDonald JF, Mackintosh SG, Tiemeyer M, Abbott KL (2015) Glycomic analysis of membrane glycoproteins with bisecting glycosylation from ovarian cancer tissues reveals novel structures and functions. J Proteome Res 14(1):434–446. https://doi.org/10.1021/pr501174p
- 249.
Handa-Narumi M, Yoshimura T, Konishi H, Fukata Y, Manabe Y, Tanaka K, Bao GM, Kiyama H, Fukase K, Ikenaka K (2018) Branched sialylated N-glycans are accumulated in brain synaptosomes and interact with siglec-H. Cell Struct Funct 43(2):141–152. https://doi.org/10.1247/csf.18009
- 250.
Henion TR, Raitcheva D, Grosholz R, Biellmann F, Skarnes WC, Hennet T, Schwarting GA (2005) Beta 1,3-N-acetylglucosaminyltransferase 1 glycosylation is required for axon pathfinding by olfactory sensory neurons. J Neurosci 25(8):1894–1903. https://doi.org/10.1523/JNEUROSCI.4654-04.2005
- 251.
Young WW Jr, Portoukalian J, Hakomori S (1981) Two monoclonal anticarbohydrate antibodies directed to glycosphingolipids with a lacto-N-glycosyl type II chain. J Biol Chem 256(21):10967–10972
Funding
This work was supported by a grant from the National Health and Medical Research Council (APP1129869 to V.S.). The Li Kashing Foundation is gratefully acknowledged for support (LD030302 to M.S.).
Author information
Affiliations
Contributions
All authors have made substantial contributions to the conception and design of the review, analyzed the literature, and drafted the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Consent for publication
All authors consent for publication.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sytnyk, V., Leshchyns’ka, I. & Schachner, M. Neural glycomics: the sweet side of nervous system functions. Cell. Mol. Life Sci. 78, 93–116 (2021). https://doi.org/10.1007/s00018-020-03578-9
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Glycans
- Neurons
- Brain
- Regeneration
- Synaptic plasticity
- Glycomimetics