Staphylococcus aureus impairs cutaneous wound healing by activating the expression of a gap junction protein, connexin-43 in keratinocytes


Chronic wounds have been considered as major medical problems that may result in expensive healthcare. One of the common causes of chronic wounds is bacterial contamination that leads to persistent inflammation and unbalanced host cell immune responses. Among the bacterial strains that have been identified from chronic wounds, Staphylococcus aureus is the most common strain. We previously observed that S. aureus impaired mouse cutaneous wound healing by delaying re-epithelialization. Here, we investigated the mechanism of delayed re-epithelialization caused by S. aureus infection. With the presence of S. aureus exudate, the migration of in vitro cultured human keratinocytes was significantly inhibited and connexin-43 (Cx43) was upregulated. Inhibition of keratinocyte migration by S. aureus exudate disappeared in keratinocytes where the expression of Cx43 knocked down. Protein kinase phosphorylation array showed that phosphorylation of Akt-S473 was upregulated by S. aureus exudate. In vivo study of Cx43 in S. aureus-infected murine splinted cutaneous wound model showed upregulation of Cx43 in the migrating epithelial edge by S. aureus infection. Treatment with a PI3K/Akt inhibitor reduced Cx43 expression and overcame the wound closure impairment by S. aureus infection in the mouse model. This may contribute to the development of treatment to bacterium-infected wounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Nussbaum SR, Carter MJ, Fife CE, DaVanzo J, Haught R, Nusgart M, Cartwright D (2018) An Economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21(1):27–32.

    Article  PubMed  Google Scholar 

  2. 2.

    James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16(1):37–44.

    Article  PubMed  Google Scholar 

  3. 3.

    Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28(5):519–526.

    Article  PubMed  Google Scholar 

  4. 4.

    Edwards R, Harding KG (2004) Bacteria and wound healing. Curr Opin Infect Dis 17(2):91–96

    Article  Google Scholar 

  5. 5.

    Malone M, Bjarnsholt T, McBain AJ, James GA, Stoodley P, Leaper D, Tachi M, Schultz G, Swanson T, Wolcott RD (2017) The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care 26(1):20–25.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Bowler PG, Duerden BI, Armstrong DG (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14(2):244–269.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Gardner SE, Frantz RA, Doebbeling BN (2001) The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen 9(3):178–186

    CAS  Article  Google Scholar 

  8. 8.

    Brook I, Frazier EH (1998) Aerobic and anaerobic microbiology of chronic venous ulcers. Int J Dermatol 37(6):426–428

    CAS  Article  Google Scholar 

  9. 9.

    Power C, Wang JH, Sookhai S, Street JT, Redmond HP (2001) Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing. J Surg Res 101(2):138–145.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Konturek PC, Brzozowski T, Konturek SJ, Kwiecien S, Dembinski A, Hahn EG (2001) Influence of bacterial lipopolysaccharide on healing of chronic experimental ulcer in rat. Scand J Gastroenterol 36(12):1239–1247

    CAS  Article  Google Scholar 

  11. 11.

    Becker DL, Thrasivoulou C (1818) Phillips AR (2012) Connexins in wound healing; perspectives in diabetic patients. Biochim Biophys Acta 8:2068–2075.

    CAS  Article  Google Scholar 

  12. 12.

    Malminen M, Koivukangas V, Peltonen J, Karvonen SL, Oikarinen A, Peltonen S (2003) Immunohistological distribution of the tight junction components ZO-1 and occludin in regenerating human epidermis. Br J Dermatol 149(2):255–260

    CAS  Article  Google Scholar 

  13. 13.

    Chavez MG, Buhr CA, Petrie WK, Wandinger-Ness A, Kusewitt DF, Hudson LG (2012) Differential downregulation of e-cadherin and desmoglein by epidermal growth factor. Dermatol Res Pract 2012:309587.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Safferling K, Sutterlin T, Westphal K, Ernst C, Breuhahn K, James M, Jager D, Halama N, Grabe N (2013) Wound healing revised: a novel reepithelialization mechanism revealed by in vitro and in silico models. J Cell Biol 203(4):691–709.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hodgins MB (2004) Connecting wounds with connexins. J Invest Dermatol 122(5):9–10.

    Article  Google Scholar 

  16. 16.

    Richard G (2000) Connexins: a connection with the skin. Exp Dermatol 9(2):77–96

    CAS  Article  Google Scholar 

  17. 17.

    Richard G (2005) Connexin disorders of the skin. Clin Dermatol 23(1):23–32.

    Article  PubMed  Google Scholar 

  18. 18.

    Common JE, Becker D, Di WL, Leigh IM, O'Toole EA, Kelsell DP (2002) Functional studies of human skin disease- and deafness-associated connexin 30 mutations. Biochem Biophys Res Commun 298(5):651–656

    CAS  Article  Google Scholar 

  19. 19.

    van Steensel MA (2004) Gap junction diseases of the skin. Am J Med Genet C Semin Med Genet 131C(1):12–19.

    Article  PubMed  Google Scholar 

  20. 20.

    Chanson M, Derouette JP, Roth I, Foglia B, Scerri I, Dudez T, Kwak BR (2005) Gap junctional communication in tissue inflammation and repair. Biochim Biophys Acta 1711(2):197–207.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Goliger JA, Paul DL (1995) Wounding alters epidermal connexin expression and gap junction-mediated intercellular communication. Mol Biol Cell 6(11):1491–1501

    CAS  Article  Google Scholar 

  22. 22.

    Coutinho P, Qiu C, Frank S, Tamber K, Becker D (2003) Dynamic changes in connexin expression correlate with key events in the wound healing process. Cell Biol Int 27(7):525–541

    CAS  Article  Google Scholar 

  23. 23.

    Qiu C, Coutinho P, Frank S, Franke S, Law LY, Martin P, Green CR, Becker DL (2003) Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 13(19):1697–1703

    CAS  Article  Google Scholar 

  24. 24.

    Kretz M, Euwens C, Hombach S, Eckardt D, Teubner B, Traub O, Willecke K, Ott T (2003) Altered connexin expression and wound healing in the epidermis of connexin-deficient mice. J Cell Sci 116(Pt 16):3443–3452.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Brandner JM, Houdek P, Husing B, Kaiser C, Moll I (2004) Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol 122(5):1310–1320.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Bajpai S, Shukla VK, Tripathi K, Srikrishna S, Singh RK (2009) Targeting connexin 43 in diabetic wound healing: future perspectives. J Postgrad Med 55(2):143–149.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Wang CM, Lincoln J, Cook JE, Becker DL (2007) Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes 56(11):2809–2817.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Kameritsch P, Pogoda K (1818) Pohl U (2012) Channel-independent influence of connexin 43 on cell migration. Biochim Biophys Acta 8:1993–2001.

    CAS  Article  Google Scholar 

  29. 29.

    Wright CS, van Steensel MA, Hodgins MB, Martin PE (2009) Connexin mimetic peptides improve cell migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro. Wound Repair Regen 17(2):240–249.

    Article  PubMed  Google Scholar 

  30. 30.

    Ghosh S, Kumar A, Tripathi RP, Chandna S (2014) Connexin-43 regulates p38-mediated cell migration and invasion induced selectively in tumour cells by low doses of gamma-radiation in an ERK-1/2-independent manner. Carcinogenesis 35(2):383–395.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Schierle CF, De la Garza M, Mustoe TA, Galiano RD (2009) Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen 17(3):354–359.

    Article  PubMed  Google Scholar 

  32. 32.

    Chen P, Abercrombie JJ, Jeffrey NR, Leung KP (2012) An improved medium for growing Staphylococcus aureus biofilm. J Microbiol Methods 90(2):115–118.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Chen P, Seth AK, Abercrombie JJ, Mustoe TA, Leung KP (2014) Activity of imipenem against Klebsiella pneumoniae biofilms in vitro and in vivo. Antimicrob Agents Chemother 58(2):1208–1213.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    CAS  Article  Google Scholar 

  35. 35.

    Nguyen KT, Seth AK, Hong SJ, Geringer MR, Xie P, Leung KP, Mustoe TA, Galiano RD (2013) Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm-containing chronic wounds. Wound Repair Regen 21(6):833–841.

    Article  PubMed  Google Scholar 

  36. 36.

    Galiano RD, Jt M, Dobryansky M, Levine JP, Gurtner GC (2004) Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 12(4):485–492.

    Article  PubMed  Google Scholar 

  37. 37.

    Haertel E, Joshi N, Hiebert P, Kopf M, Werner S (2018) Regulatory T cells are required for normal and activin-promoted wound repair in mice. Eur J Immunol 48(6):1001–1013.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ (2015) The murine excisional wound model: contraction revisited. Wound Repair Regen 23(6):874–877.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18(1):207–208

    CAS  Article  Google Scholar 

  40. 40.

    Batra N, Riquelme MA, Burra S, Kar R, Gu S, Jiang JX (2014) Direct regulation of osteocytic connexin 43 hemichannels through AKT kinase activated by mechanical stimulation. J Biol Chem 289(15):10582–10591.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419(2):261–272.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Bates DC, Sin WC, Aftab Q, Naus CC (2007) Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55(15):1554–1564.

    Article  PubMed  Google Scholar 

  43. 43.

    Homkajorn B, Sims NR, Muyderman H (2010) Connexin 43 regulates astrocytic migration and proliferation in response to injury. Neurosci Lett 486(3):197–201.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Wei CJ, Francis R, Xu X, Lo CW (2005) Connexin43 associated with an N-cadherin-containing multiprotein complex is required for gap junction formation in NIH3T3 cells. J Biol Chem 280(20):19925–19936.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Moorby CD (2000) A connexin 43 mutant lacking the carboxyl cytoplasmic domain inhibits both growth and motility of mouse 3T3 fibroblasts. Mol Carcinog 28(1):23–30

    CAS  Article  Google Scholar 

  46. 46.

    Behrens J, Kameritsch P, Wallner S, Pohl U, Pogoda K (2010) The carboxyl tail of Cx43 augments p38 mediated cell migration in a gap junction-independent manner. Eur J Cell Biol 89(11):828–838.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Pepper MS, Montesano R, el Aoumari A, Gros D, Orci L, Meda P (1992) Coupling and connexin 43 expression in microvascular and large vessel endothelial cells. Am J Physiol 262(5 Pt 1):C1246–1257

    CAS  Article  Google Scholar 

  48. 48.

    Liu X, Liu W, Yang L, Xia B, Li J, Zuo J, Li X (2007) Increased connexin 43 expression improves the migratory and proliferative ability of H9c2 cells by Wnt-3a overexpression. Acta Biochim Biophys Sin (Shanghai) 39(6):391–398

    CAS  Article  Google Scholar 

  49. 49.

    Huang GY, Cooper ES, Waldo K, Kirby ML, Gilula NB, Lo CW (1998) Gap junction-mediated cell-cell communication modulates mouse neural crest migration. J Cell Biol 143(6):1725–1734

    CAS  Article  Google Scholar 

  50. 50.

    Lo CW, Waldo KL, Kirby ML (1999) Gap junction communication and the modulation of cardiac neural crest cells. Trends Cardiovasc Med 9(3–4):63–69

    CAS  Article  Google Scholar 

  51. 51.

    Pepper MS, Spray DC, Chanson M, Montesano R, Orci L, Meda P (1989) Junctional communication is induced in migrating capillary endothelial cells. J Cell Biol 109(6 Pt 1):3027–3038

    CAS  Article  Google Scholar 

  52. 52.

    Pepper MS, Meda P (1992) Basic fibroblast growth factor increases junctional communication and connexin 43 expression in microvascular endothelial cells. J Cell Physiol 153(1):196–205.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Park DJ, Wallick CJ, Martyn KD, Lau AF, Jin C, Warn-Cramer BJ (2007) Akt phosphorylates connexin 43 on Ser373, a "mode-1" binding site for 14–3-3. Cell Commun Adhes 14(5):211–226.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Dunn CA, Su V, Lau AF, Lampe PD (2012) Activation of Akt, not connexin 43 protein ubiquitination, regulates gap junction stability. J Biol Chem 287(4):2600–2607.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Long XH, Zhong ZH, Peng AF, Zhu LB, Wang H, Zhang GM, Liu ZL (2014) LY294002 suppresses the malignant phenotype and sensitizes osteosarcoma cells to pirarubicin chemotherapy. Mol Med Rep 10(6):2967–2972.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Avni D, Glucksam Y, Zor T (2012) The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 modulates cytokine expression in macrophages via p50 nuclear factor kappaB inhibition, in a PI3K-independent mechanism. Biochem Pharmacol 83(1):106–114.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Hemmings BA, Restuccia DF (2015) The PI3K-PKB/Akt Pathway. Csh Perspect Biol 7(4):a011189

    Google Scholar 

  58. 58.

    Li G, Li YY, Sun JE, Lin WH, Zhou RX (2016) ILK-PI3K/AKT pathway participates in cutaneous wound contraction by regulating fibroblast migration and differentiation to myofibroblast. Lab Invest 96(7):741–751.

    CAS  Article  PubMed  Google Scholar 

Download references


Internal funding from the Division of Plastic and Reconstructive Surgery.

Author information



Corresponding authors

Correspondence to Wei Xu or Seok Hong or Robert Galiano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8600 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Dielubanza, E., Maisel, A. et al. Staphylococcus aureus impairs cutaneous wound healing by activating the expression of a gap junction protein, connexin-43 in keratinocytes. Cell. Mol. Life Sci. 78, 935–947 (2021).

Download citation


  • Skin wound repair
  • Staphylococcus aureus
  • Connexin 43
  • Re-epithelialization