Driving the catalytic activity of a transmembrane thermosensor kinase


DesK is a Bacillus thermosensor kinase that is inactive at high temperatures but turns activated when the temperature drops below 25 °C. Surprisingly, the catalytic domain (DesKC) lacking the transmembrane region is more active at higher temperature, showing an inverted regulation regarding DesK. How does the transmembrane region control the catalytic domain, repressing activity at high temperatures, but allowing activation at lower temperatures? By designing a set of temperature minimized sensors that share the same catalytic cytoplasmic domain but differ in number and position of hydrogen-bond (H-bond) forming residues along the transmembrane helix, we are able to tune, invert or disconnect activity from the input signal. By favoring differential H-bond networks, the activation peak could be moved towards lower or higher temperatures. This principle may be involved in regulation of other sensors as environmental physicochemical changes or mutations that modify the transmembrane H-bond pattern can tilt the equilibrium favoring alternative conformations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Cybulski LE, Martín M, Mansilla MC, Fernández A, De Mendoza D (2010) Membrane thickness cue for cold sensing in a bacterium. Curr Biol 20:1539–1544

    CAS  Article  Google Scholar 

  2. 2.

    Inda ME, Oliveira RG, de Mendoza D, Cybulski LE (2016) The single transmembrane segment of minimal sensor DesK senses temperature via a membrane-thickness caliper. J Bacteriol 198:2945–2954

    CAS  Article  Google Scholar 

  3. 3.

    Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, De Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691

    CAS  Article  Google Scholar 

  4. 4.

    Cybulski LE, Del Solar G, Craig PO, Espinosa M, De Mendoza D (2004) Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J Biol Chem 279:39340–39347

    CAS  Article  Google Scholar 

  5. 5.

    Abriata LA, Albanesi D, Dal Peraro M, De Mendoza D (2017) Signal sensing and transduction by histidine kinases as unveiled through studies on a temperature sensor. Acc Chem Res 50:1359–1366

    CAS  Article  Google Scholar 

  6. 6.

    Albanesi D, Mansilla MC, de Mendoza D (2004) The membrane fluidity sensor DesK of. J Bacteriol 186:2655–2663

    CAS  Article  Google Scholar 

  7. 7.

    Cybulski LE, Vazquez DB, Killian JA, de Mendoza D, Inda ME, Ballering J, Tieleman DP, Moussatova A, Wassenaar TA (2015) Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. Proc Natl Acad Sci 112:6353–6358

    CAS  Article  Google Scholar 

  8. 8.

    Inda ME, Vazquez DB, Fernández A, Cybulski LE (2019) Reverse engineering of a thermosensing regulator switch. J Mol Biol 431:1016–1024

    CAS  Article  Google Scholar 

  9. 9.

    Zhou FX, Cocco MJ, Russ WP, Brunger AT, Engelman DM (2000) Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Mol Biol 7:154–160

    CAS  Article  Google Scholar 

  10. 10.

    Stockner T, Ash WL, MacCallum JL, Tieleman DP (2004) Direct simulation of transmembrane helix association: role of asparagines. Biophys J 87:1650–1656

    CAS  Article  Google Scholar 

  11. 11.

    Yang SK, Zimmerman SC (2013) Hydrogen bonding modules for use in supramolecular polymers. Isr J Chem 53:511–520

    CAS  Article  Google Scholar 

  12. 12.

    Mariottini D, Idili A, Nijenhuis MAD, Ercolani G, Ricci F (2019) Entropy-based rational modulation of the pKa of a synthetic pH-dependent nanoswitch. J Am Chem Soc 141(29):11367–11371

    CAS  Article  Google Scholar 

  13. 13.

    Inda ME, Cybulski LE, Ruysschaert J-M, de Mendoza D, Vandenbranden M, Fernández A (2014) A lipid-mediated conformational switch modulates the thermosensing activity of DesK. Proc Natl Acad Sci 111:3579–3584

    CAS  Article  Google Scholar 

  14. 14.

    Trajtenberg F, Graña M, Ruétalo N, Botti H, Buschiazzo A (2010) Structural and enzymatic insights into the ATP binding and autophosphorylation mechanism of a sensor histidine kinase. J Biol Chem 285:24892–24903

    CAS  Article  Google Scholar 

  15. 15.

    Martín M, Albanesi D, Alzari PM, de Mendoza D (2009) Functional in vitro assembly of the integral membrane bacterial thermosensor DesK. Protein Expr Purif 66:39–45

    Article  Google Scholar 

  16. 16.

    Soto Diaz S, Betton J-M, Buschiazzo A, Alzari PM, Mechaly AE, Sassoon N (2017) Structural coupling between Autokinase and phosphotransferase reactions in a bacterial histidine kinase. Structure 25:939.e3–944.e3

    Google Scholar 

  17. 17.

    Albanesi D, Martin M, Trajtenberg F, Mansilla MC, Haouz A, Alzari PM, de Mendoza D, Buschiazzo A (2009) Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc Natl Acad Sci 106:16185–16190

    CAS  Article  Google Scholar 

  18. 18.

    Bargmann CI, Hung MC, Weinberg RA (1986) Multiple independent activations of the Neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45:649–657

    CAS  Article  Google Scholar 

  19. 19.

    Bargmann CI, Weinberg RA (1988) Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J 7:2043–2052

    CAS  Article  Google Scholar 

  20. 20.

    Matsushita C, Tamagaki H, Miyazawa Y, Smith SO, Sato T, Aimoto S (2013) Transmembrane helix orientation influences membrane binding of the intracellular juxtamembrane domain in Neu receptor peptides. Proc Natl Acad Sci 110:1646–1651

    CAS  Article  Google Scholar 

  21. 21.

    Berntsson O, Diensthuber RP, Panman MR, Björling A, Gustavsson E, Hoernke M, Hughes AJ, Henry L, Niebling S, Takala H, Ihalainen JA, Newby G, Kerruth S, Heberle J, Liebi M, Menzel A, Henning R, Kosheleva I, Möglich A, Westenhoff S (2017) Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase. Nat Commun 8:1–7

    CAS  Article  Google Scholar 

  22. 22.

    Bi S, Jin F, Sourjik V (2018) Inverted signaling by bacterial chemotaxis receptors. Nat Commun 9:2927–2940

    Article  Google Scholar 

  23. 23.

    Diensthuber RP, Bommer M, Gleichmann T, Möglich A (2013) Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure 21:1127–1136

    CAS  Article  Google Scholar 

Download references


This work was supported by Grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT), and international cooperations: CONICET-Fonds National de la Recherche Scientifique (FNRS). M.E.I., J.C.A and D.B.V are Fellows of CONICET, and L.E.C., A.B. and A.F. are Career Investigators of CONICET.

Author information




MEI, DBV, AB and JCA performed the experiments and discussed the results. LEC envisioned and coordinated the project and wrote the manuscript. JMR, AF and MEI contributed to the writing.

Corresponding author

Correspondence to Larisa Estefanía Cybulski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Inda, M.E., Almada, J.C., Vazquez, D.B. et al. Driving the catalytic activity of a transmembrane thermosensor kinase. Cell. Mol. Life Sci. 77, 3905–3912 (2020). https://doi.org/10.1007/s00018-019-03400-1

Download citation


  • Signal transduction
  • Transmembrane signalling
  • Histidine kinase
  • Cold adaptation
  • Dimerization motif
  • Activity regulation
  • Receptor