Skip to main content

Inhibition of HIV replication through siRNA carried by CXCR4-targeted chimeric nanobody

Abstract

Small interfering RNA (siRNA) application in therapy still faces a major challenge with the lack of an efficient and specific delivery system. Current vehicles are often responsible for poor efficacy, safety concerns, and burden costs of siRNA-based therapeutics. Here, we describe a novel strategy for targeted delivery of siRNA molecules to inhibit human immunodeficiency virus (HIV) infection. Specific membrane translocation of siRNA inhibitor was addressed by an engineered nanobody targeting the HIV co-receptor CXCR4 (NbCXCR4) in fusion with a single-chain variable fragment (4M5.3) that carried the FITC-conjugated siRNA. 4M5.3–NbCXCR4 conjugate (4M5.3X4) efficiently targeted CXCR4+ T lymphocytes, specifically translocating siRNA by receptor-mediated endocytosis. Targeted delivery of siRNA directed to the mRNA of HIV transactivator tat silenced Tat-driven viral transcription and inhibited the replication of distinct virus clades. In summary, we have shown that the engineered nanobody chimera developed in this study constitutes an efficient and specific delivery method of siRNAs through CXCR4 receptor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. http://www.ncbi.nlm.nih.gov/pubmed/9486653

  2. 2.

    Daka A, Peer D (2012) RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 64(13):1508–1521. https://doi.org/10.1016/j.addr.2012.08.014

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Krebs MD, Alsberg E. Localized, targeted, and sustained siRNA delivery. Chemistry 17(11):3054–3062 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21341332

  4. 4.

    Bobbin ML, Burnett JC, Rossi JJ (2015) RNA interference approaches for treatment of HIV-1 infection. Genome Med 7(1):50. http://genomemedicine.com/content/7/1/50

  5. 5.

    Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43(42):13348–13356. http://www.ncbi.nlm.nih.gov/pubmed/15491141

  6. 6.

    Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178. https://doi.org/10.1038/nature03121

    Article  PubMed  Google Scholar 

  7. 7.

    Tabernero J, Shapiro GI, LoRusso PM et al (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3(4):406–417. http://www.ncbi.nlm.nih.gov/pubmed/23358650

  8. 8.

    Schultheis B, Strumberg D, Santel A et al (2014) First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol 32(36):4141–4148. https://doi.org/10.1200/JCO.2013.55.0376

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448

    CAS  Article  Google Scholar 

  10. 10.

    Desmyter A, Transue TR, Ghahroudi MA et al (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3(9):803–811. http://www.ncbi.nlm.nih.gov/pubmed/8784355

  11. 11.

    Ward ES, Güssow D, Griffiths AD, Jones PT, Winter G (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341(6242):544–546

    CAS  Article  Google Scholar 

  12. 12.

    Amara A, Gall SL, Schwartz O et al (1997) HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR12 contributes to inhibition of HIV replication. J Exp Med 186(1):139–146

    CAS  Article  Google Scholar 

  13. 13.

    Kularatne SA, Deshmukh V, Ma J et al (2014) A CXCR13-targeted site-specific antibody-drug conjugate. Angew Chemie Int Ed 53(44):11863–11867

    CAS  Article  Google Scholar 

  14. 14.

    Egorova A, Kiselev A, Hakli M, Ruponen M, Baranov V, Urtti A (2009) Chemokine-derived peptides as carriers for gene delivery to CXCR1 expressing cells. J Gene Med 11(9):772–781. https://doi.org/10.1002/jgm.1366

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Egorova A, Bogacheva M, Shubina A, Baranov V, Kiselev A (2014) Development of a receptor-targeted gene delivery system using CXCR1 ligand-conjugated cross-linking peptides. J Gene Med 16(11–12):336–351. https://doi.org/10.1002/jgm.2811

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Jähnichen S, Blanchetot C, Maussang D et al (2010) CXCR16 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci USA 107(47):20565–20570

    Article  Google Scholar 

  17. 17.

    Midelfort KS, Hernandez HH, Lippow SM, Tidor B, Drennan CL, Wittrup KD (2004) Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody. J Mol Biol 343(3):685–701

    CAS  Article  Google Scholar 

  18. 18.

    Weiss A, Wiskocil RL, Stobo JD (1984) The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J Immunol 133(1):123–128

    CAS  PubMed  Google Scholar 

  19. 19.

    Smith SD, Shatsky M, Cohen PS, Warnke R, Link MP, Glader BE (1984) Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res 44(12 Pt 1):5657–5660. http://www.ncbi.nlm.nih.gov/pubmed/6437672

  20. 20.

    Platt EJ, Bilska M, Kozak SL, Kabat D, Montefiori DC (2009) Evidence that ecotropic murine leukemia virus contamination in TZM-bl cells does not affect the outcome of neutralizing antibody assays with human immunodeficiency virus type 1. J Virol 83(16):8289–8292

    CAS  Article  Google Scholar 

  21. 21.

    Wei X, Decker JM, Liu H et al (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46(6):1896–1905

    CAS  Article  Google Scholar 

  22. 22.

    Takeuchi Y, McClure MO, Pizzato M (2008) Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research. J Virol 82(24):12585–12588

    CAS  Article  Google Scholar 

  23. 23.

    Derdeyn CA, Decker JM, Sfakianos JN et al (2000) Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 74(18):8358–8367

    CAS  Article  Google Scholar 

  24. 24.

    Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D (1998) Effects of CCR24 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J Virol 72(4):2855–2864

    CAS  Article  Google Scholar 

  25. 25.

    Adachi A, Gendelman HE, Koenig S et al (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59(2):284–291

    CAS  Article  Google Scholar 

  26. 26.

    Lahm HW, Stein S (1985) Characterization of recombinant human interleukin-2 with micromethods. J Chromatogr 326:357–361. http://www.ncbi.nlm.nih.gov/pubmed/3875623

  27. 27.

    Godinho-Santos A, Hance AJ, Gonçalves J, Mammano F (2016) CIB1 and CIB2 are HIV-1 helper factors involved in viral entry. Sci Rep 6(1):30927. http://www.ncbi.nlm.nih.gov/pubmed/27489023

  28. 28.

    Borrego P, Calado R, Marcelino JM et al (2012) Baseline susceptibility of primary HIV-2 to entry inhibitors. Antivir Ther 17(3):565–570

    CAS  Article  Google Scholar 

  29. 29.

    Saayman S, Barichievy S, Capovilla A, Morris KV, Arbuthnot P, Weinberg MS (2008) The efficacy of generating three independent anti-HIV-1 siRNAs from a single U6 RNA Pol III-Expressed long hairpin RNA. PLoS One 3(7):e2602

    Article  Google Scholar 

  30. 30.

    Blanchetot C et al (2011) US 2011/0318347 A1

  31. 31.

    Cunha-Santos C, Figueira TN, Borrego P et al (2016) Development of synthetic light-chain antibodies as novel and potent HIV fusion inhibitors. Aids. 30(11):1691–1701

    CAS  Article  Google Scholar 

  32. 32.

    Oliveira SS, Da Silva FA, Lourenco S, Freitas-Vieira A, Santos ACC, Goncalves J (2012) Assessing combinatorial strategies to multimerize libraries of single-domain antibodies. Biotechnol Appl Biochem 59(3):193–204

    CAS  Article  Google Scholar 

  33. 33.

    Hou P, Chen S, Wang S et al (2015) Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep 5:15577. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4612538&tool=pmcentrez&rendertype=abstract

  34. 34.

    Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 94(5):1925–1930. http://www.ncbi.nlm.nih.gov/pubmed/9050881

  35. 35.

    Ott M, Geyer M, Zhou Q (2011) The Control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 10(5):426–435. http://www.ncbi.nlm.nih.gov/pubmed/22100159

  36. 36.

    Zuckerman JE, Davis ME (2015) Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov 14(12):843–856. https://doi.org/10.1038/nrd4685

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143. http://www.ncbi.nlm.nih.gov/pubmed/28918016%0A. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5496203

  38. 38.

    Lorenzer C, Dirin M, Winkler A-M, Baumann V, Winkler J (2015) Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release 203:1–15

    CAS  Article  Google Scholar 

  39. 39.

    Egorova A, Shubina A, Sokolov D, Selkov S, Baranov V, Kiselev A (2016) CXCR1-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery. Int J Pharm 515(1–2):431–440

    CAS  Article  Google Scholar 

  40. 40.

    Song E, Zhu P, Lee S-K et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23(6):709–717

    CAS  Article  Google Scholar 

  41. 41.

    Kumar P, Ban H-S, Kim S-S et al (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134(4):577–586. http://www.ncbi.nlm.nih.gov/pubmed/18691745

  42. 42.

    Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M (2007) Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA 104(10):4095–4100. http://www.ncbi.nlm.nih.gov/pubmed/17360483

  43. 43.

    Schneider B, Grote M, John M et al (2012) Targeted siRNA delivery and mRNA knockdown mediated by bispecific digoxigenin-binding antibodies. Mol Ther Nucleic Acids 1:e46

    Article  Google Scholar 

  44. 44.

    Zhou J, Swiderski P, Li H et al (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37(9):3094–3109. http://www.ncbi.nlm.nih.gov/pubmed/19304999

  45. 45.

    Zhou J, Li H, Li S, Zaia J, Rossi JJ (2008) Novel dual inhibitory function aptamer–siRNA delivery system for HIV-1 therapy. Mol Ther 16(8):1481–1489

    CAS  Article  Google Scholar 

  46. 46.

    Berahovich RD, Lai NLNL, Wei Z, Lanier LL, Schall TJ (2006) Evidence for NK cell subsets based on chemokine receptor expression. J Immunol 177(11):7833–7840. http://www.jimmunol.org/content/177/11/7833.full

  47. 47.

    Poles MA, Elliott J, Taing P, Anton PA, Chen ISY (2001) A preponderance of CCR47 + CXCR47 + mononuclear cells enhances gastrointestinal mucosal susceptibility to human immunodeficiency virus type 1 infection. J Virol 75(18):8390–8399

    CAS  Article  Google Scholar 

  48. 48.

    Tebas P, Stein D, Tang WW et al (2014) Gene Editing of CCR1 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med 370(10):901–910. https://doi.org/10.1056/NEJMoa1300662

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Perez EE, Wang J, Miller JC et al (2008) Establishment of HIV-1 resistance in CD4 + T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26(7):808–816. https://doi.org/10.1038/nbt1410

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Holt N, Wang J, Kim K et al (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28(8):839–847. http://www.nature.com/articles/nbt.1663

  51. 51.

    Westby M, Lewis M, Whitcomb J et al (2006) Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir. J Virol 80(10):4909–4920. http://www.ncbi.nlm.nih.gov/pubmed/16641282

  52. 52.

    Poveda E (2015) HIV tropism shift: new paradigm on cell therapy strategies for HIV cure. AIDS Rev 17(1):65. http://www.ncbi.nlm.nih.gov/pubmed/25608470

  53. 53.

    Darcis G, Van Driessche B, Van Lint C (2017) HIV latency: should we shock or lock? Trends Immunol 38:217–228

    CAS  Article  Google Scholar 

  54. 54.

    Perdigao P, Gaj T, Santa-Marta M, Barbas CF, Goncalves J (2016) Reactivation of latent HIV-1 expression by engineered TALE transcription factors. PLoS One 11(3):1–18

    Article  Google Scholar 

  55. 55.

    Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST (2015) The tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio 6(4):e00465. http://www.ncbi.nlm.nih.gov/pubmed/26152583

  56. 56.

    Kessing CF, Nixon CC, Li C et al (2017) In vivo suppression of HIV rebound by didehydro-cortistatin A, a “block-and-lock” strategy for HIV-1 Treatment. Cell Rep 21(3):600–611. http://www.ncbi.nlm.nih.gov/pubmed/29045830

  57. 57.

    Policicchio BB, Pandrea I, Apetrei C (2016) Animal models for HIV cure research. Front Immunol 7:12. http://www.ncbi.nlm.nih.gov/pubmed/26858716

  58. 58.

    Boden D, Pusch O, Lee F, Tucker L, Ramratnam B (2003) Human immunodeficiency virus type 1 escape from RNA interference. J Virol 77(21):11531–11535. http://www.ncbi.nlm.nih.gov/pubmed/14557638

  59. 59.

    Das AT, Brummelkamp TR, Westerhout EM et al (2004) Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 78(5):2601–2605. http://www.ncbi.nlm.nih.gov/pubmed/14963165

Download references

Acknowledgements

This work was supported by the HIVERA—Harmonizing, Integrating and Vitalizing European Research on AIDS/HIV [Grant number HIVERA/0002/2013], and the Fundação para a Ciência e a Tecnologia—Ministério da Educação e Ciência (FCT-MEC), Portugal [Grant numbers UTAP-ICDT/DTP-FTO/0016/2014, VIH/SAU/0013/2011, VIH/SAU/0020/2011, VIH/SAU/0029/2011, PTDC/SAU-EPI/122400/2010]. CC-S acknowledges FCT-MEC for PhD fellowship SFRH/BD/73838/2010. PRLP acknowledges FCT-MEC for PhD fellowship SFRH/BD/81941/2011. FM acknowledges FCT-MEC for PhD fellowship SFRH/BD/87488/2012.

Author information

Affiliations

Authors

Contributions

CC-S, NT, and JG conceived and designed the experiments. CC-S, PRLP, FM, JGO, MC, and AM performed the experiments and analyzed the data. CC-S drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Joao Goncalves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 395 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cunha-Santos, C., Perdigao, P.R.L., Martin, F. et al. Inhibition of HIV replication through siRNA carried by CXCR4-targeted chimeric nanobody. Cell. Mol. Life Sci. 77, 2859–2870 (2020). https://doi.org/10.1007/s00018-019-03334-8

Download citation

Keywords

  • Small interfering RNA
  • CXCR4
  • Nanobody
  • Delivery
  • HIV