Skip to main content

Advertisement

Log in

Versatile cell ablation tools and their applications to study loss of cell functions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Targeted cell ablation is a powerful approach for studying the role of specific cell populations in a variety of organotypic functions, including cell differentiation, and organ generation and regeneration. Emerging tools for permanently or conditionally ablating targeted cell populations and transiently inhibiting neuronal activities exhibit a diversity of application and utility. Each tool has distinct features, and none can be universally applied to study different cell types in various tissue compartments. Although these tools have been developed for over 30 years, they require additional improvement. Currently, there is no consensus on how to select the tools to answer the specific scientific questions of interest. Selecting the appropriate cell ablation technique to study the function of a targeted cell population is less straightforward than selecting the method to study a gene’s functions. In this review, we discuss the features of the various tools for targeted cell ablation and provide recommendations for optimal application of specific approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buch T et al (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2:419–426

    Article  CAS  PubMed  Google Scholar 

  2. Saito M et al (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19:746–750

    Article  CAS  PubMed  Google Scholar 

  3. Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310:683–685

    Article  CAS  PubMed  Google Scholar 

  4. Lahl K et al (2007) Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kendall SK et al (1991) Targeted ablation of pituitary gonadotropes in transgenic mice. Mol Endocrinol 5:2025–2036

    Article  CAS  PubMed  Google Scholar 

  6. Wada T et al (2010) Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Investig 120:2867–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thorel F et al (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464:1149–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M (2010) Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 33:955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karam SM (2010) Mouse models demonstrating the role of stem/progenitor cells in gastric carcinogenesis. Front Biosci 15:595–603

    Article  CAS  Google Scholar 

  10. Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M (2010) Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 33:955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Makhijani K et al (2017) Precision optogenetic tool for selective single- and multiple-cell ablation in a live animal model system. Cell Chem Biol 24:110–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sweeney ST, Hidalgo A, de Belle JS, Keshishian H (2012) Setup for functional cell ablation with lasers: coupling of a laser to a microscope. Cold Spring Harb Protoc 2012:726–732

    PubMed  Google Scholar 

  13. Sweeney ST, Hidalgo A, de Belle JS, Keshishian H (2012) Embryonic cell ablation in Drosophila using lasers. Cold Spring Harb Protoc 2012:691–693

    PubMed  Google Scholar 

  14. O’Kane CJ, Moffat KG (1992) Selective cell ablation and genetic surgery. Curr Opin Genet Dev 2:602–607

    Article  PubMed  Google Scholar 

  15. Allen JR et al (2017) Role of branchiomotor neurons in controlling food intake of zebrafish larvae. J Neurogenet 31:128–137

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fang-Yen C, Gabel CV, Samuel AD, Bargmann CI, Avery L (2012) Laser microsurgery in Caenorhabditis elegans. Methods Cell Biol 107:177–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pike SH, Eisen JS (1990) Identified primary motoneurons in embryonic zebrafish select appropriate pathways in the absence of other primary motoneurons. J Neurosci 10:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soustelle L, Aigouy B, Asensio ML, Giangrande A (2008) UV laser mediated cell selective destruction by confocal microscopy. Neural Dev 3:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pavlova I et al (2003) Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy. Photochem Photobiol 77:550–555

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka N, Takeuchi T, Neri QV, Sills ES, Palermo GD (2006) Laser-assisted blastocyst dissection and subsequent cultivation of embryonic stem cells in a serum/cell free culture system: applications and preliminary results in a murine model. J Transl Med 4:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cortes JL et al (2008) Whole-blastocyst culture followed by laser drilling technology enhances the efficiency of inner cell mass isolation and embryonic stem cell derivation from good- and poor-quality mouse embryos: new insights for derivation of human embryonic stem cell lines. Stem Cells Dev 17:255–267

    Article  CAS  PubMed  Google Scholar 

  22. Sano Y, Watanabe W, Matsunaga S (2014) Chromophore-assisted laser inactivation—towards a spatiotemporal-functional analysis of proteins, and the ablation of chromatin, organelle and cell function. J Cell Sci 127:1621–1629

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi J et al (2013) A method for selective ablation of neurons in C. elegans using the phototoxic fluorescent protein, KillerRed. Neurosci Lett 548:261–264

    Article  CAS  PubMed  Google Scholar 

  24. Williams DC et al (2013) Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed. Cell Rep 5:553–563

    Article  CAS  PubMed  Google Scholar 

  25. Qi YB, Garren EJ, Shu X, Tsien RY, Jin Y (2012) Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc Natl Acad Sci USA 109:7499–7504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smart AD et al (2017) Engineering a light-activated caspase-3 for precise ablation of neurons in vivo. Proc Natl Acad Sci USA 114:E8174–E8183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Whissell PD, Tohyama S, Martin LJ (2016) The use of DREADDs to deconstruct behavior. Front Genet 7:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 37:387–407

    Article  CAS  PubMed  Google Scholar 

  29. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  30. Adamantidis AR, Zhang F, de Lecea L, Deisseroth K (2014) Optogenetics: opsins and optical interfaces in neuroscience. Cold Spring Harb Protoc 2014:815–822

    PubMed  Google Scholar 

  31. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  32. Li X et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA 102:17816–17821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang F et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  34. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299

    Article  PubMed  PubMed Central  Google Scholar 

  35. Magnus CJ et al (2011) Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333:1292–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104:5163–5168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Nichols CD, Roth BL (2009) Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Front Mol Neurosci 2:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang F et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Terzioglu M, Galter D (2008) Parkinson’s disease: genetic versus toxin-induced rodent models. FEBS J 275:1384–1391

    Article  CAS  PubMed  Google Scholar 

  40. Hisahara S, Shimohama S (2010) Toxin-induced and genetic animal models of Parkinson’s disease. Parkinsons Dis 2011:951709

    PubMed  PubMed Central  Google Scholar 

  41. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224

    Article  PubMed  Google Scholar 

  42. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494

    Article  PubMed  PubMed Central  Google Scholar 

  43. Van Rooijen N (1989) The liposome-mediated macrophage ‘suicide’ technique. J Immunol Methods 124:1–6

    Article  PubMed  Google Scholar 

  44. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174:83–93

    Article  PubMed  Google Scholar 

  45. van Rooijen N, Hendrikx E (2010) Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 605:189–203

    Article  PubMed  CAS  Google Scholar 

  46. Sunderkotter C et al (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410–4417

    Article  PubMed  Google Scholar 

  47. Kelly C, Jefferies C, Cryan SA (2011) Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv 2011:e727241

    Article  CAS  Google Scholar 

  48. Li Z, Xu X, Feng X, Murphy PM (2016) The macrophage-depleting agent clodronate promotes durable hematopoietic chimerism and donor-specific skin allograft tolerance in mice. Sci Rep 6:22143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Rooijen N, Sanders A (1996) Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate, propamidine, and ethylenediaminetetraacetic acid. Hepatology 23:1239–1243

    Article  PubMed  Google Scholar 

  50. Su D, Van Rooijen N (1989) The role of macrophages in the immunoadjuvant action of liposomes: effects of elimination of splenic macrophages on the immune response against intravenously injected liposome-associated albumin antigen. Immunology 66:466–470

    CAS  PubMed  PubMed Central  Google Scholar 

  51. van Rooijen N, Sanders A, van den Berg TK (1996) Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods 193:93–99

    Article  PubMed  Google Scholar 

  52. Bauer A et al (1999) The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 13:2996–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Diwan A et al (2008) Targeting erythroblast-specific apoptosis in experimental anemia. Apoptosis 13:1022–1030

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hanson MM et al (2016) Rapid conditional targeted ablation model for hemolytic anemia in the rat. Physiol Genom 48:626–632

    Article  CAS  Google Scholar 

  55. Ramot Y et al (2007) Age and dose sensitivities in the 2-butoxyethanol F344 rat model of hemolytic anemia and disseminated thrombosis. Exp Toxicol Pathol 58:311–322

    Article  CAS  PubMed  Google Scholar 

  56. Dornfest BS et al (1990) Phenylhydrazine is a mitogen and activator of lymphoid cells. Ann Clin Lab Sci 20:353–370

    CAS  PubMed  Google Scholar 

  57. Klinken SP, Holmes KL, Fredrickson TN, Erner SM, Morse HC 3rd (1987) Phenylhydrazine stimulates lymphopoiesis and accelerates Abelson murine leukemia virus-induced pre-B cell lymphomas. J Immunol 139:3091–3098

    CAS  PubMed  Google Scholar 

  58. Ramot Y, Koshkaryev A, Goldfarb A, Yedgar S, Barshtein G (2008) Phenylhydrazine as a partial model for beta-thalassaemia red blood cell hemodynamic properties. Br J Haematol 140:692–700

    Article  CAS  PubMed  Google Scholar 

  59. Gregoire D, Kmita M (2008) Recombination between inverted loxP sites is cytotoxic for proliferating cells and provides a simple tool for conditional cell ablation. Proc Natl Acad Sci USA 105:14492–14496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    Article  CAS  PubMed  Google Scholar 

  61. MacCorkle RA, Freeman KW, Spencer DM (1998) Synthetic activation of caspases: artificial death switches. Proc Natl Acad Sci USA 95:3655–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin 37:719–727

    Article  CAS  PubMed  Google Scholar 

  63. Steller H (1998) Artificial death switches: induction of apoptosis by chemically induced caspase multimerization. Proc Natl Acad Sci USA 95:5421–5422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mallet VO et al (2002) Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol 20:1234–1239

    Article  CAS  PubMed  Google Scholar 

  65. Pajvani UB et al (2005) Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med 11:797–803

    Article  CAS  PubMed  Google Scholar 

  66. Wang ZV et al (2008) PANIC-ATTAC: a mouse model for inducible and reversible beta-cell ablation. Diabetes 57:2137–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cho JH, Mu X, Wang SW, Klein WH (2009) Retinal ganglion cell death and optic nerve degeneration by genetic ablation in adult mice. Exp Eye Res 88:542–552

    Article  CAS  PubMed  Google Scholar 

  68. Fujioka M, Tokano H, Fujioka KS, Okano H, Edge AS (2011) Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation. J Clin Investig 121:2462–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Holland WL et al (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 17:55–63

    Article  CAS  PubMed  Google Scholar 

  70. Finn WF (1999) FK506 nephrotoxicity. Ren Fail 21:319–329

    Article  CAS  PubMed  Google Scholar 

  71. Solassol J, Mange A, Maudelonde T (2011) FKBP family proteins as promising new biomarkers for cancer. Curr Opin Pharmacol 11:320–325

    Article  CAS  PubMed  Google Scholar 

  72. Czuprynski CJ, Brown JF, Maroushek N, Wagner RD, Steinberg H (1994) Administration of anti-granulocyte mAb RB6-8C5 impairs the resistance of mice to Listeria monocytogenes infection. J Immunol 152:1836–1846

    CAS  PubMed  Google Scholar 

  73. Fleming TJ, Fleming ML, Malek TR (1993) Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 151:2399–2408

    CAS  PubMed  Google Scholar 

  74. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE (2008) Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 83:64–70

    Article  CAS  PubMed  Google Scholar 

  75. Bruhn KW, Dekitani K, Nielsen TB, Pantapalangkoor P, Spellberg B (2016) Ly6G-mediated depletion of neutrophils is dependent on macrophages. Results Immunol 6:5–7

    Article  PubMed  Google Scholar 

  76. Zhou X, Hu W, Qin X (2008) The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist 13:954–966

    Article  CAS  PubMed  Google Scholar 

  77. Uchida J et al (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199:1659–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hamaguchi Y, Xiu Y, Komura K, Nimmerjahn F, Tedder TF (2006) Antibody isotype-specific engagement of Fcgamma receptors regulates B lymphocyte depletion during CD20 immunotherapy. J Exp Med 203:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cobbold SP, Jayasuriya A, Nash A, Prospero TD, Waldmann H (1984) Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312:548–551

    Article  CAS  PubMed  Google Scholar 

  80. Grcevic D, Lee SK, Marusic A, Lorenzo JA (2000) Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1,25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis. J Immunol 165:4231–4238

    Article  CAS  PubMed  Google Scholar 

  81. Fillat C, Carrio M, Cascante A, Sangro B (2003) Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther 3:13–26

    Article  CAS  PubMed  Google Scholar 

  82. Shen Y, Nemunaitis J (2006) Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther 13:975–992

    Article  CAS  PubMed  Google Scholar 

  83. Salama SA et al (2007) Gene therapy of uterine leiomyoma: adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir treatment inhibits growth of human and rat leiomyoma cells in vitro and in a nude mouse model. Gynecol Obstet Invest 63:61–70

    Article  CAS  PubMed  Google Scholar 

  84. Barese CN et al (2012) Thymidine kinase suicide gene-mediated ganciclovir ablation of autologous gene-modified rhesus hematopoiesis. Mol Ther 20:1932–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jimenez T, Fox WP, Naus CC, Galipeau J, Belliveau DJ (2006) Connexin over-expression differentially suppresses glioma growth and contributes to the bystander effect following HSV-thymidine kinase gene therapy. Cell Commun Adhes 13:79–92

    Article  CAS  PubMed  Google Scholar 

  86. Williams EM et al (2015) Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 471:131–153

    Article  CAS  PubMed  Google Scholar 

  87. Djeha AH et al (2000) Expression of Escherichia coli B nitroreductase in established human tumor xenografts in mice results in potent antitumoral and bystander effects upon systemic administration of the prodrug CB1954. Cancer Gene Ther 7:721–731

    Article  CAS  PubMed  Google Scholar 

  88. Curado S et al (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236:1025–1035

    Article  CAS  PubMed  Google Scholar 

  89. Isles AR et al (2001) Conditional ablation of neurones in transgenic mice. J Neurobiol 47:183–193

    Article  CAS  PubMed  Google Scholar 

  90. Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ (2001) Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34:272–282

    Article  CAS  PubMed  Google Scholar 

  91. Felmer R, Cui W, Clark AJ (2002) Inducible ablation of adipocytes in adult transgenic mice expressing the E. coli nitroreductase gene. J Endocrinol 175:487–498

    Article  CAS  PubMed  Google Scholar 

  92. Helsby NA, Ferry DM, Patterson AV, Pullen SM, Wilson WR (2004) 2-Amino metabolites are key mediators of CB 1954 and SN 23862 bystander effects in nitroreductase GDEPT. Br J Cancer 90:1084–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Westphal EM, Ge J, Catchpole JR, Ford M, Kenney SC (2000) The nitroreductase/CB1954 combination in Epstein-Barr virus-positive B-cell lines: induction of bystander killing in vitro and in vivo. Cancer Gene Ther 7:97–106

    Article  CAS  PubMed  Google Scholar 

  94. Plummer NW, Ungewitter EK, Smith KG, Yao HH, Jensen P (2017) A new mouse line for cell ablation by diphtheria toxin subunit A controlled by a Cre-dependent FLEx switch. Genesis 55:e23067

    Article  CAS  Google Scholar 

  95. Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245–250

    Article  CAS  PubMed  Google Scholar 

  96. Christiaansen AF, Boggiatto PM, Varga SM (2014) Limitations of Foxp3(+) Treg depletion following viral infection in DEREG mice. J Immunol Methods 406:58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goldwich A, Steinkasserer A, Gessner A, Amann K (2012) Impairment of podocyte function by diphtheria toxin—a new reversible proteinuria model in mice. Lab Investig 92:1674–1685

    Article  CAS  PubMed  Google Scholar 

  98. Hu W et al (2008) Rapid conditional targeted ablation of cells expressing human CD59 in transgenic mice by intermedilysin. Nat Med 14:98–103

    Article  CAS  PubMed  Google Scholar 

  99. Palmiter RD et al (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50:435–443

    Article  CAS  PubMed  Google Scholar 

  100. Behringer RR, Mathews LS, Palmiter RD, Brinster RL (1988) Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev 2:453–461

    Article  CAS  PubMed  Google Scholar 

  101. Lowell BB et al (1993) Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366:740–742

    Article  CAS  PubMed  Google Scholar 

  102. Ross SR, Graves RA, Spiegelman BM (1993) Targeted expression of a toxin gene to adipose tissue: transgenic mice resistant to obesity. Genes Dev 7:1318–1324

    Article  CAS  PubMed  Google Scholar 

  103. Brockschnieder D, Pechmann Y, Sonnenberg-Riethmacher E, Riethmacher D (2006) An improved mouse line for Cre-induced cell ablation due to diphtheria toxin A, expressed from the Rosa26 locus. Genesis 44:322–327

    Article  CAS  PubMed  Google Scholar 

  104. Breitman ML, Rombola H, Maxwell IH, Klintworth GK, Bernstein A (1990) Genetic ablation in transgenic mice with an attenuated diphtheria toxin A gene. Mol Cell Biol 10:474–479

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Brockschnieder D et al (2004) Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol Cell Biol 24:7636–7642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ivanova A et al (2005) In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis 43:129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Longbottom R et al (2009) Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the epithelium and impact on photoreceptors. Proc Natl Acad Sci USA 106:18728–18733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Voehringer D, Liang HE, Locksley RM (2008) Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice. J Immunol 180:4742–4753

    Article  CAS  PubMed  Google Scholar 

  109. Comai G, Sambasivan R, Gopalakrishnan S, Tajbakhsh S (2014) Variations in the efficiency of lineage marking and ablation confound distinctions between myogenic cell populations. Dev Cell 31:654–667

    Article  CAS  PubMed  Google Scholar 

  110. Gregoire D, Kmita M (2014) Genetic cell ablation. Methods Mol Biol 1092:421–436

    Article  CAS  PubMed  Google Scholar 

  111. Nagamune H et al (1996) Intermedilysin, a novel cytotoxin specific for human cells secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess. Infect Immun 64:3093–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178

    Article  CAS  PubMed  Google Scholar 

  113. Johnson S, Brooks NJ, Smith RA, Lea SM, Bubeck D (2013) Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep 3:1369–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lautenschlager I, Hockerstedt K, Meri S (1999) Complement membrane attack complex and protectin (CD59) in liver allografts during acute rejection. J Hepatol 31:537–541

    Article  CAS  PubMed  Google Scholar 

  115. Qian YM et al (2000) Identification and functional characterization of a new gene encoding the mouse terminal complement inhibitor CD59. J Immunol 165:2528–2534

    Article  CAS  PubMed  Google Scholar 

  116. Qin X et al (2001) Genomic structure, functional comparison, and tissue distribution of mouse Cd59a and Cd59b. Mamm Genome 12:582–589

    Article  CAS  PubMed  Google Scholar 

  117. Qin X et al (2003) Deficiency of the mouse complement regulatory protein mCd59b results in spontaneous hemolytic anemia with platelet activation and progressive male infertility. Immunity 18:217–227

    Article  CAS  PubMed  Google Scholar 

  118. Qin X et al (2009) Generation and phenotyping of mCd59a and mCd59b double-knockout mice. Am J Hematol 84:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Qin X, Gao B (2006) The complement system in liver diseases. Cell Mol Immunol 3:333–340

    CAS  PubMed  Google Scholar 

  120. Wu G et al (2009) Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circ Res 104:550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu G et al (2010) Complement regulator CD59 protects against angiotensin II-induced abdominal aortic aneurysms in mice. Circulation 121:1338–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu W et al (2010) The critical roles of platelet activation and reduced NO bioavailability in fatal pulmonary arterial hypertension in a murine hemolysis model. Blood 116:1613–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McCurry KR et al (1995) Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med 1:423–427

    Article  CAS  PubMed  Google Scholar 

  124. Cowan PJ et al (1998) Knock out of α1,3-galactosyltransferase or expression of α1,2- fucosyltransferase further protects CD55- and CD59-expressing mouse hearts in an ex vivo model of xenograft rejection. Transplantation 65:1599–1604

    Article  CAS  PubMed  Google Scholar 

  125. Cowan PJ et al (2000) Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons. Transplantation 69:2504–2515

    Article  CAS  PubMed  Google Scholar 

  126. Huang J et al (2001) Protection of xenogeneic cells from human complement-mediated lysis by the expression of human DAF, CD59 and MCP. FEMS Immunol Med Microbiol 31:203–209

    Article  CAS  PubMed  Google Scholar 

  127. Niemann H et al (2001) Cytomegalovirus early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection. Transplantation 72:1898–1906

    Article  CAS  PubMed  Google Scholar 

  128. Feng D et al (2016) Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. J Clin Invest 126:2321–2333

    Article  PubMed  PubMed Central  Google Scholar 

  129. Johansen A et al (2018) The importance of small polar radiometabolites in molecular neuroimaging: a PET study with [(11)C]Cimbi-36 labeled in two positions. J Cereb Blood Flow Metab 38:659–668

    Article  CAS  PubMed  Google Scholar 

  130. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  131. Bush TG et al (1998) Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93:189–201

    Article  CAS  PubMed  Google Scholar 

  132. Bush TG et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308

    Article  CAS  PubMed  Google Scholar 

  133. Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    Article  CAS  PubMed  Google Scholar 

  134. Rodrigues SF, Granger DN (2015) Blood cells and endothelial barrier function. Tissue Barriers 3:e978720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Zietz C et al (1996) Aortic endothelium in HIV-1 infection: chronic injury, activation, and increased leukocyte adherence. Am J Pathol 149:1887–1898

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Nottet HS (1999) Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood-brain barrier function. J Neurovirol 5:659–669

    Article  CAS  PubMed  Google Scholar 

  137. Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93:105–113

    Article  CAS  PubMed  Google Scholar 

  138. Bailey AS et al (2004) Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 103:13–19

    Article  CAS  PubMed  Google Scholar 

  139. Robertson S, Kennedy M, Keller G (1999) Hematopoietic commitment during embryogenesis. Ann N Y Acad Sci 872:9–15 (discussion 15-16)

    Article  CAS  PubMed  Google Scholar 

  140. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725

    Article  CAS  PubMed  Google Scholar 

  141. Bailey AS et al (2006) Myeloid lineage progenitors give rise to vascular endothelium. Proc Natl Acad Sci 103:13156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huang W et al (2018) 41st annual research society on alcoholism scientific meeting. San Diego, CA

    Google Scholar 

  143. Ono S, Egawa G, Kabashima K (2017) Regulation of blood vascular permeability in the skin. Inflamm Regen 37:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Kim SJ et al (2019) Adipocyte death preferentially induces liver injury and inflammation via the activation of CCR1(+) macrophages and lipolysis. Hepatology 69:1965–1982

    Article  CAS  PubMed  Google Scholar 

  145. Mederacke I et al (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823

    Article  PubMed  CAS  Google Scholar 

  146. Balani S, Nguyen LV, Eaves CJ (2017) Modeling the process of human tumorigenesis. Nat Commun 8:15422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Seydoux G, Greenwald I (1989) Cell autonomy of lin-12 function in a cell fate decision in C. elegans. Cell 57:1237–1245

    Article  CAS  PubMed  Google Scholar 

  148. Seydoux G, Savage C, Greenwald I (1993) Isolation and characterization of mutations causing abnormal eversion of the vulva in Caenorhabditis elegans. Dev Biol 157:423–436

    Article  CAS  PubMed  Google Scholar 

  149. Ghosh S, Sternberg PW (2014) Spatial and molecular cues for cell outgrowth during C. elegans uterine development. Dev Biol 396:121–135

    Article  CAS  PubMed  Google Scholar 

  150. Eisen JS, Pike SH, Debu B (1989) The growth cones of identified motoneurons in embryonic zebrafish select appropriate pathways in the absence of specific cellular interactions. Neuron 2:1097–1104

    Article  CAS  PubMed  Google Scholar 

  151. Eisen JS, Pike SH, Romancier B (1990) An identified motoneuron with variable fates in embryonic zebrafish. J Neurosci 10:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bernhardt RR, Nguyen N, Kuwada JY (1992) Growth cone guidance by floor plate cells in the spinal cord of zebrafish embryos. Neuron 8:869–882

    Article  CAS  PubMed  Google Scholar 

  153. Bhatt DH, Otto SJ, Depoister B, Fetcho JR (2004) Cyclic AMP-induced repair of zebrafish spinal circuits. Science 305:254–258

    Article  CAS  PubMed  Google Scholar 

  154. Martin SM, O’Brien GS, Portera-Cailliau C, Sagasti A (2010) Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning. Development 137:3985–3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yanik MF et al (2004) Neurosurgery: functional regeneration after laser axotomy. Nature 432:822

    Article  CAS  PubMed  Google Scholar 

  156. Byrne AB, Edwards TJ, Hammarlund M (2011) In vivo laser axotomy in C. elegans. J Vis Exp 51:e2707

    Google Scholar 

  157. Gokce SK et al (2014) A fully automated microfluidic femtosecond laser axotomy platform for nerve regeneration studies in C. elegans. PloS One 9:e113917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Johnson K et al (2016) Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord. Glia 64:1170–1189

    Article  PubMed  PubMed Central  Google Scholar 

  159. Singh SP, Holdway JE, Poss KD (2012) Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22:879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang J, Cao J, Dickson AL, Poss KD (2015) Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 522:226–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu F et al (2017) Deficiency of the complement regulatory protein CD59 accelerates the development of diabetes-induced atherosclerosis in mice. J Diabetes Complicat 31:311–317

    Article  Google Scholar 

  162. Wu J, Yan LJ (2015) Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic beta cell glucotoxicity. Diabetes Metab Syndr Obes 8:181–188

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Rother RP, Bell L, Hillmen P, Gladwin MT (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293:1653–1662

    Article  CAS  PubMed  Google Scholar 

  164. Liesner RJ, Vandenberghe EA (1993) Sudden death in sickle cell disease. J R Soc Med 86:484–485

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Haque AK et al (2002) Pulmonary hypertension in sickle cell hemoglobinopathy: a clinicopathologic study of 20 cases. Hum Pathol 33:1037–1043

    Article  PubMed  Google Scholar 

  166. Gladwin MT et al (2004) Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med 350:886–895

    Article  CAS  PubMed  Google Scholar 

  167. El-Beshlawy A et al (2008) Pulmonary hypertension in beta-thalassemia major and the role of L-carnitine therapy. Pediatr Hematol Oncol 25:734–743

    Article  CAS  PubMed  Google Scholar 

  168. Escoffery CT, Shirley SE (2002) Causes of sudden natural death in Jamaica: a medicolegal (coroner’s) autopsy study from the university hospital of the West Indies. Forensic Sci Int 129:116–121

    Article  CAS  PubMed  Google Scholar 

  169. Castro O, Hoque M, Brown BD (2003) Pulmonary hypertension in sickle cell disease: cardiac catheterization results and survival. Blood 101:1257–1261

    Article  CAS  PubMed  Google Scholar 

  170. Machado RF et al (2007) Severity of pulmonary hypertension during vaso-occlusive pain crisis and exercise in patients with sickle cell disease. Br J Haematol 136:319–325

    Article  PubMed  Google Scholar 

  171. Patel MM, Modi JP, Patel SM, Patel RD (2007) Vasoocclusion by sickled RBCs in 5 autopsy cases of sudden death. Indian J Pathol Microbiol 50:914–916

    PubMed  Google Scholar 

  172. Manci EA et al (2003) Causes of death in sickle cell disease: an autopsy study. Br J Haematol 123:359–365

    Article  PubMed  Google Scholar 

  173. Hutchins KD, Ballas SK, Phatak D, Natarajan GA (2001) Sudden unexpected death in a patient with splenic sequestration and sickle cell-beta+-thalassemia syndrome. J Forensic Sci 46:412–414

    Article  CAS  PubMed  Google Scholar 

  174. Gajic O, Gropper MA, Hubmayr RD (2006) Pulmonary edema after transfusion: how to differentiate transfusion-associated circulatory overload from transfusion-related acute lung injury. Crit Care Med 34:S109–S113

    Article  PubMed  Google Scholar 

  175. Skeate RC, Eastlund T (2007) Distinguishing between transfusion related acute lung injury and transfusion associated circulatory overload. Curr Opin Hematol 14:682–687

    Article  PubMed  Google Scholar 

  176. Oakes RS, Siegler RL, McReynolds MA, Pysher T, Pavia AT (2006) Predictors of fatality in postdiarrheal hemolytic uremic syndrome. Pediatrics 117:1656–1662

    Article  PubMed  Google Scholar 

  177. Gould LH et al (2009) Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000–2006. Clin Infect Dis 49:1480–1485

    Article  PubMed  Google Scholar 

  178. Machado RF, Gladwin MT (2005) Chronic sickle cell lung disease: new insights into the diagnosis, pathogenesis and treatment of pulmonary hypertension. Br J Haematol 129:449–464

    Article  CAS  PubMed  Google Scholar 

  179. Machado RF et al (2005) Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br J Haematol 130:445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Littera R et al (2002) Long-term treatment with sildenafil in a thalassemic patient with pulmonary hypertension. Blood 100:1516–1517

    Article  CAS  PubMed  Google Scholar 

  181. Gladwin MT, Vichinsky E (2008) Pulmonary complications of sickle cell disease. N Engl J Med 359:2254–2265

    Article  CAS  PubMed  Google Scholar 

  182. Bunn HF et al (2010) Pulmonary hypertension and nitric oxide depletion in sickle cell disease. Blood 116:687–692

    Article  CAS  PubMed  Google Scholar 

  183. Parent F et al (2011) A hemodynamic study of pulmonary hypertension in sickle cell disease. N Engl J Med 365:44–53

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by R21OD024931 (XQ), R21AA024984 (SLC and XQ), R21 DA043448 (SLC and XQ), R01 HL130233 (XQ), R01HL141132 (XQ) and P40 OD011062 (ECB).

Author information

Authors and Affiliations

Authors

Contributions

FL, SD, DF, XP, ZQ, ACK, WH, YC, SE, HW, JR, ECB, AC, BA, HH, SLC, BG, and XQ wrote the paper. ZQ and XB drew the pictures and generated table. XB developed the idea.

Corresponding author

Correspondence to Xuebin Qin.

Ethics declarations

Conflict of interest

Authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Dai, S., Feng, D. et al. Versatile cell ablation tools and their applications to study loss of cell functions. Cell. Mol. Life Sci. 76, 4725–4743 (2019). https://doi.org/10.1007/s00018-019-03243-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03243-w

Keywords

Navigation