Skip to main content

Advertisement

Log in

Anti-type 2 transglutaminase antibodies as modulators of type 2 transglutaminase functions: a possible pathological role in celiac disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Auto-antibodies to the ubiquitous enzyme type-2 transglutaminase (TG2) are a specific hallmark of celiac disease (CD), a widely diffused, multi-factorial disease, affecting genetically predisposed subjects. In CD an inflammatory response, at the intestinal level, is triggered by diet consumption of gluten-containing cereals. Intestinal mucosa displays various degrees of atrophy and hyperplasia, with consequent global intestinal dysfunction and other relevant extra-intestinal symptoms. Through deamidation of specific glutamines of gluten-derived gliadin peptides, TG2 strongly enhances gliadin immunogenicity. In addition, TG2 cross-linking activity may generate complexes between TG2 itself and gliadin peptides, and these complexes seem to cause the auto-immune response by means of an apten-carrier-like mechanism of antigen presentation. Anti-TG2 antibodies can be early detected in the intestinal mucosa of celiac patients and are also abundantly present into the serum, thus potentially reaching other organs and tissues by blood circulation. Recently, the possible pathogenetic role of auto-antibodies to TG2 in CD has been investigated. Here, we report an overview about the genesis of these antibodies, their specificity, their modulating ability toward TG2 enzymatic or non-enzymatic activities and their biological effects exerted by interacting with extracellular TG2 or with cell-surface TG2. We also discuss the auto-immune response occurring in CD against other TG members (i.e. type 3 and type 6) and analyze the occurrence of anti-TG2 antibodies in other auto-immune CD-related diseases. Data now available let us to suppose that, even if antibodies to TG2 do not represent the triggering molecules in CD, they could be important players in disease progression and manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TG2:

Type-2 transglutaminase

CD:

Celiac disease

TG:

Transglutaminase

HLA:

Human leukocyte antigens

DH:

Dermatitis herpetiformis

TG3:

Type 3 transglutaminase

TG6:

Type 6 transglutaminase

T1D:

Type 1 diabetes

References

  1. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156. https://doi.org/10.1038/nrm1014

    Article  CAS  PubMed  Google Scholar 

  2. Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3(7):797–801. https://doi.org/10.1038/nm0797-797

    Article  CAS  PubMed  Google Scholar 

  3. Grenard P, Bates MK, Aeschlimann D (2001) Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 276(35):33066–33078. https://doi.org/10.1074/jbc.M102553200

    Article  CAS  PubMed  Google Scholar 

  4. Lai TS, Lin CJ, Greenberg CS (2017) Role of tissue transglutaminase-2 (TG2)-mediated aminylation in biological processes. Amino Acids 49(3):501–551. https://doi.org/10.1007/s00726-016-2270-8

    Article  CAS  PubMed  Google Scholar 

  5. Stamnaes J, Fleckenstein B, Sollid LM (2008) The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions. Biochim Biophys Acta 1784(11):1804–1811. https://doi.org/10.1016/j.bbapap.2008.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É (2011) Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 91(3):931–972. https://doi.org/10.1152/physrev.00016.2010

    Article  CAS  PubMed  Google Scholar 

  7. Dean MD (2013) Genetic disruption of the copulatory plug in mice leads to severely reduced fertility. PLoS Genet 9(1):e1003185. https://doi.org/10.1371/journal.pgen.1003185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang WG, Ablin RJ (2011) Prostate transglutaminase: a unique transglutaminase and its role in prostate cancer. Biomark Med 5(3):285–291. https://doi.org/10.2217/bmm.11.36

    Article  CAS  PubMed  Google Scholar 

  9. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6(4):328–340. https://doi.org/10.1038/nrm1619

    Article  CAS  PubMed  Google Scholar 

  10. Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GV, Mehta K (2014) Transglutaminase regulation of cell function. Physiol Rev 94(2):383–417. https://doi.org/10.1152/physrev.00019.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ientile R, Caccamo D, Griffin M (2007) Tissue transglutaminase and the stress response. Amino Acids 33(2):385–394. https://doi.org/10.1007/s00726-007-0517-0

    Article  CAS  PubMed  Google Scholar 

  12. Nurminskaya MV, Belkin AM (2012) Cellular functions of tissue transglutaminase. Int Rev Cell Mol Biol 294:1–97. https://doi.org/10.1016/B978-0-12-394305-7.00001-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264(5165):1593–1596

    Article  CAS  Google Scholar 

  14. Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89(3):991–1023. https://doi.org/10.1152/physrev.00044.2008

    Article  CAS  PubMed  Google Scholar 

  15. Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747. https://doi.org/10.1073/pnas.042454899

    Article  CAS  PubMed  Google Scholar 

  16. Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327. https://doi.org/10.1371/journal.pbio.0050327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuo TF, Tatsukawa H, Kojima S (2011) New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 278(24):4756–4767. https://doi.org/10.1111/j.1742-4658.2011.08409.x

    Article  CAS  PubMed  Google Scholar 

  18. Kanchan K, Fuxreiter M, Fésüs L (2015) Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 72(16):3009–3035. https://doi.org/10.1007/s00018-015-1909-z

    Article  CAS  PubMed  Google Scholar 

  19. RodolfoC Mormone E, Matarrese P, Ciccosanti F, Farrace MG, Garofano E, Piredda L, Fimia GM, Malorni W, Piacentini M (2004) Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 279:54783–54792. https://doi.org/10.1074/jbc.M410938200

    Article  CAS  Google Scholar 

  20. Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793–803. https://doi.org/10.1042/BJ20021084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mastroberardino PG, Farrace MG, Viti I, Pavone F, Fimia GM, Melino G, Rodolfo C, Piacentini M (2006) “Tissue” transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochim Biophys Acta 1757:1357–1365. https://doi.org/10.1016/j.bbabio.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  22. Lai TS, Lin CJ, Wu YT, Wu CJ (2017) Tissue transglutaminase (TG2) and mitochondrial function and dysfunction. Front Biosci (Landmark Ed) 1(22):1114–11372017

    Article  Google Scholar 

  23. Zemskov EA, Mikhailenko I, Hsia RC, Zaritskaya L, Belkin AM (2011) Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One 6(4):e19414. https://doi.org/10.1371/journal.pone.0019414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148(4):825–838

    Article  CAS  Google Scholar 

  25. Zemskov EA, Mikhailenko I, Smith EP, Belkin AM (2012) Tissue transglutaminase promotes PDGF/PDGFR-mediated signaling and responses in vascular smooth muscle cells. J Cell Physiol 227(5):2089–2096. https://doi.org/10.1002/jcp.22938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dardik R, Inbal A (2006) Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res 312(16):2973–2982. https://doi.org/10.1016/j.yexcr.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  27. Zemskov EA, Mikhailenko I, Strickland DK, Belkin AM (2007) Cell-surface transglutaminase undergoes internalization and lysosomal degradation: an essential role for LRP1. J Cell Sci 120(Pt 18):3188–3199. https://doi.org/10.1242/jcs.010397

    Article  CAS  PubMed  Google Scholar 

  28. Faverman L, Mikhaylova L, Malmquist J, Nurminskaya M (2008) Extracellular transglutaminase 2 activates beta-catenin signaling in calcifying vascular smooth muscle cells. FEBS Lett 582(10):1552–1557. https://doi.org/10.1016/j.febslet.2008.03.053

    Article  CAS  PubMed  Google Scholar 

  29. Scarpellini A, Germack R, Lortat-Jacob H, Muramatsu T, Billett E, Johnson T, Verderio EA (2009) Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J Biol Chem 284(27):18411–18423. https://doi.org/10.1074/jbc.M109.012948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Belkin AM (2011) Extracellular TG2: emerging functions and regulation. FEBS J 278(24):4704–4716. https://doi.org/10.1111/j.1742-4658.2011.08346.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siegel M, Strnad P, Watts RE, Choi K, Jabri B, Omary MB, Khosla C (2008) Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One 3(3):e1861. https://doi.org/10.1371/journal.pone.000186132

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285:25402–25409. https://doi.org/10.1074/jbc.M109.097162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fraij BM, Gonzales RA (1996) A third human tissue transglutaminase homologue as a result of alternative gene transcripts. Biochim Biophys Acta 1306:63–74

    Article  Google Scholar 

  34. Monsonego A, Shani Y, Friedmann I, Paas Y, Eizenberg O, Schwartz M (1997) Expression of GTPdependent and GTP-independent tissue-type transglutaminase in cytokine-treated rat brain astrocytes. J Biol Chem 272:3724–3732

    Article  CAS  Google Scholar 

  35. Antonyak MA, Jansen JM, Miller AM, Ly TK, Endo M, Cerione RA (1996) Two isoforms of tissue transglutaminase mediate opposing cellular fates. Proc Natl Acad Sci USA 103:18609–18614

    Article  Google Scholar 

  36. Lai TS, Liu Y, Li W, Greenberg CS (2007) Identification of two GTP-independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells. FASEB J 21:4131–4143

    Article  CAS  Google Scholar 

  37. Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279:23863–23868. https://doi.org/10.1074/jbc.m311919200

    Article  CAS  PubMed  Google Scholar 

  38. Mishra S, Saleh A, Espino PS, Davie JR, Murphy LJ (2006) Phosphorylation of histones by tissue transglutaminase. J Biol Chem 281:5532–5538. https://doi.org/10.1074/jbc.m506864200

    Article  CAS  PubMed  Google Scholar 

  39. Mishra S, Melino G, Murphy LJ (2007) Transglutaminase 2 kinase activity facilitates protein kinaseA-induced phosphorylation of retinoblastoma protein. J Biol Chem 282:18108–18115. https://doi.org/10.1074/jbc.m607413200

    Article  CAS  PubMed  Google Scholar 

  40. Mishra S, Murphy LJ (2006) The p53 oncoprotein is a substrate for tissue transglutaminase kinase activity. Biochem Biophys Res Commun 339:726–730. https://doi.org/10.1016/j.bbrc.2005.11.071

    Article  CAS  PubMed  Google Scholar 

  41. Király R, Thangaraju K, Nagy Z, Collighan R, Nemes Z, Griffin M, Fésüs L (2016) Isopeptidase activity of human transglutaminase 2: disconnection from transamidation and characterization by kinetic parameters. Amino Acids 48(1):31–40. https://doi.org/10.1007/s00726-015-2063-5

    Article  CAS  PubMed  Google Scholar 

  42. Esposito C, Caputo I (2005) Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance. FEBS J 272(3):615–631. https://doi.org/10.1111/j.1742-4658.2004.04476.x

    Article  CAS  PubMed  Google Scholar 

  43. Kumar S, Mehta K (2013) Tissue transglutaminase, inflammation, and cancer: how intimate is the relationship? Amino Acids 44(1):81–88. https://doi.org/10.1007/s00726-011-1139-0

    Article  CAS  PubMed  Google Scholar 

  44. Ruan Q, Johnson GV (2007) Transglutaminase 2 in neurodegenerative disorders. Front Biosci 12:891–904. https://doi.org/10.2741/2111

    Article  CAS  PubMed  Google Scholar 

  45. Sollid LM (2002) Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2(9):647–655. https://doi.org/10.1038/nri885

    Article  CAS  PubMed  Google Scholar 

  46. Leffler DA, Green PH, Fasano A (2015) Extraintestinal manifestations of coeliac disease. Nat Rev Gastroenterol Hepatol 12(10):561–571. https://doi.org/10.1038/nrgastro.2015.131

    Article  CAS  PubMed  Google Scholar 

  47. Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24(2):115–119. https://doi.org/10.1016/j.fm.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  48. Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297(5590):2275–2279. https://doi.org/10.1126/science.1074129

    Article  CAS  PubMed  Google Scholar 

  49. Setty M, Discepolo V, Abadie V, Kamhawi S, Mayassi T, Kent A, Ciszewski C, Maglio M, Kistner E, Bhagat G, Semrad C, Kupfer SS, Green PH, Guandalini S, Troncone R, Murray JA, Turner JR, Jabri B (2015) Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology 149(3):681–691. https://doi.org/10.1053/j.gastro.2015.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schuppan D, Junker Y, Barisani D (2009) Celiac disease: from pathogenesis to novel therapies. Gastroenterology 137(6):1912–1933. https://doi.org/10.1053/j.gastro.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  51. Kaukinen K, Partanen J, Mäki M, Collin P (2002) HLA-DQ typing in the diagnosis of celiac disease. Am J Gastroenterol 97(3):695–699. https://doi.org/10.1111/j.1572-0241.2002.05471.x

    Article  PubMed  Google Scholar 

  52. Romanos J, Rosén A, Kumar V, Trynka G, Franke L, Szperl A, Gutierrez-Achury J, van Diemen CC, Kanninga R, Jankipersadsing SA, Steck A, Eisenbarth G, van Heel DA, Cukrowska B, Bruno V, Mazzilli MC, Núñez C, Bilbao JR, Mearin ML, Barisani D, Rewers M, Norris JM, Ivarsson A, Boezen HM, Liu E, Wijmenga C, Prevent CD Group (2014) Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut 63(3):415–422. https://doi.org/10.1136/gutjnl-2012-304110

    Article  PubMed  Google Scholar 

  53. Giersiepen K, Lelgemann M, Stuhldreher N, Ronfani L, Husby S, Koletzko S, Korponay-Szabó IR (2012) ESPGHAN Working Group on Coeliac Disease Diagnosis. Accuracy of diagnostic antibody tests for coeliac disease in children: summary of an evidence report. J Pediatr Gastroenterol Nutr 54(2):229–241. https://doi.org/10.1097/MPG.0b013e318216f2e5

    Article  CAS  PubMed  Google Scholar 

  54. Werkstetter KJ, Korponay-Szabó IR, Popp A, Villanacci V, Salemme M, Heilig G, Lillevang ST, Mearin ML, Ribes-Koninckx C, Thomas A, Troncone R, Filipiak B, Mäki M, Gyimesi J, Najafi M, Dolinšek J, Dydensborg Sander S, Auricchio R, Papadopoulou A, Vécsei A, Szitanyi P, Donat E, Nenna R, Alliet P, Penagini F, Garnier-Lengliné H, Castillejo G, Kurppa K, Shamir R, Hauer AC, Smets F, Corujeira S, van Winckel M, Buderus S, Chong S, Husby S, Koletzko S, ProCeDE study group (2017) Accuracy in diagnosis of celiac disease without biopsies in clinical practice. Gastroenterology 153(4):924–935. https://doi.org/10.1053/j.gastro.2017.06.002

    Article  PubMed  Google Scholar 

  55. Vader LW, de Ru A, van der Wal Y, Kooy YM, Benckhuijsen W, Mearin ML, Drijfhout JW, van Veelen P, Koning F (2002) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 195(5):643–92002

    Article  CAS  Google Scholar 

  56. Sollid LM, Jabri B (2011) Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of auto-immune disorders. Curr Opin Immunol 23(6):732–738. https://doi.org/10.1016/j.coi.2011.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F (2012) Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455–460. https://doi.org/10.1007/s00251-012-0599-z

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fleckenstein B, Molberg Ø, Qiao SW, Schmid DG, von der Mülbe F, Elgstøen K, Jung G, Sollid LM (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 277(37):34109–34116. https://doi.org/10.1074/jbc.m204521200

    Article  CAS  PubMed  Google Scholar 

  59. Esposito C, Paparo F, Caputo I, Porta R, Salvati VM, Mazzarella G, Auricchio S, Troncone R (2003) Expression and enzymatic activity of small intestinal tissue transglutaminase in celiac disease. Am J Gastroenterol 98(8):1813–1820. https://doi.org/10.1111/j.1572-0241.2003.07582.x

    Article  CAS  PubMed  Google Scholar 

  60. Biagi F, Campanella J, Laforenza U, Gastaldi G, Tritto S, Grazioli M, Villanacci V, Corazza GR (2006) Transglutaminase 2 in the enterocytes is coeliac specific and gluten dependent. Dig Liver Dis 38(9):652–658. https://doi.org/10.1016/j.dld.2006.05.021

    Article  CAS  PubMed  Google Scholar 

  61. Villanacci V, Not T, Sblattero D, Gaiotto T, Chirdo F, Galletti A, Bassotti G (2009) Mucosal tissue transglutaminase expression in celiac disease. J Cell Mol Med 13(2):334–340. https://doi.org/10.1111/j.1582-4934.2008.00325.x

    Article  CAS  PubMed  Google Scholar 

  62. Dahle C, Hagman A, Ignatova S, Ström M (2010) Antibodies against deamidated gliadin peptides identify adult coeliac disease patients negative for antibodies against endomysium and tissue transglutaminase. Aliment Pharmacol Ther 32(2):254–260. https://doi.org/10.1111/j.1365-2036.2010.04337.x

    Article  CAS  PubMed  Google Scholar 

  63. Marzari R, Sblattero D, Florian F, Tongiorgi E, Not T, Tommasini A, Ventura A, Bradbury A (2001) Molecular dissection of the tissue transglutaminase autoantibody response in celiac disease. J Immunol 166:4170–4176

    Article  CAS  Google Scholar 

  64. Korponay-Szabó IR, Halttunen T, Szalai Z, Laurila K, Király R, Kovács JB, Fésüs L, Mäki M (2004) In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac auto-antibodies. Gut 53(5):641–648. https://doi.org/10.1136/gut.2003.024836

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kaukinen K, Peräaho M, Collin P, Partanen J, Woolley N et al (2005) Small-bowel mucosal transglutaminase 2-specific IgA deposits in coeliac disease without villous atrophy: a prospective and randomized clinical study. Scand J Gastroenterol 40:564–572. https://doi.org/10.1080/00365520510023422

    Article  CAS  PubMed  Google Scholar 

  66. Taavela J, Kurppa K, Collin P, Lähdeaho ML, Salmi T, Saavalainen P, Haimila K, Huhtala H, Laurila K, Sievänen H, Mäki M, Kaukinen K (2013) Degree of damage to the small bowel and serum antibody titers correlate with clinical presentation of patients with celiac disease. Clin Gastroenterol Hepatol 11(2):166–171. https://doi.org/10.1016/j.cgh.2012.09.030

    Article  PubMed  Google Scholar 

  67. Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N (2002) Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 195(6):747–757. https://doi.org/10.1084/jem.20011299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D (2008) Auto-antibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64:332–343. https://doi.org/10.1002/ana.21450

    Article  CAS  PubMed  Google Scholar 

  69. Sollid LM, Molberg Ø, McAdam S, Lundin KEA (1997) Auto-antibodies in celiac disease: tissue transglutaminase–guilt by association? Gut 41:851–852

    Article  CAS  Google Scholar 

  70. Fleckenstein B, Qiao SW, Larsen MR, Jung G, Roepstorff P, Sollid LM (2004) Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 279:17607–17616. https://doi.org/10.1074/jbc.M310198200

    Article  CAS  PubMed  Google Scholar 

  71. Stamnaes J, Iversen R, du Pré MF, Chen X, Sollid LM (2015) Enhanced B-cell receptor recognition of the autoantigen transglutaminase 2 by efficient catalytic self-multimerization. PLoS One 10(8):e0134922. https://doi.org/10.1371/journal.pone.0134922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sollid LM (2017) The roles of MHC class II genes and post-translational modification in celiac disease. Immunogenetics 69(8–9):605–616. https://doi.org/10.1007/s00251-017-0985-7

    Article  CAS  PubMed  Google Scholar 

  73. Shaoul R, Lerner A (2007) Associated auto-antibodies in celiac disease. Autoimmun Rev 6(8):559–565. https://doi.org/10.1016/j.autrev.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  74. Alaedini A, Green PH (2008) Auto-antibodies in celiac disease. Autoimmunity 41(1):19–26. https://doi.org/10.1080/08916930701619219

    Article  CAS  PubMed  Google Scholar 

  75. Stamnaes J, Sollid LM (2015) Celiac disease: autoimmunity in response to food antigen. Semin Immunol 27(5):343–352. https://doi.org/10.1016/j.smim.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  76. Iversen R, du Pré MF, Di Niro R, Sollid LM (2015) Igs as substrates for transglutaminase 2: implications for autoantibody production in celiac disease. J Immunol 195:5159–5168. https://doi.org/10.4049/jimmunol.1501363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zanoni G, Navone R, Lunardi C, Tridente G, Bason C, Sivori S, Beri R, Dolcino M, Valletta E, Corrocher R, Puccetti A (2006) In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med 3(9):e358. https://doi.org/10.1371/journal.pmed.0030358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dolcino M, Zanoni G, Bason C, Tinazzi E, Boccola E, Valletta E, Contreas G, Lunardi C, Puccetti A (2013) A subset of anti-rotavirus antibodies directed against the viral protein VP7 predicts the onset of celiac disease and induces typical features of the disease in the intestinal epithelial cell line T84. Immunol Res 56(2–3):465–476. https://doi.org/10.1007/s12026-013-8420-0

    Article  CAS  PubMed  Google Scholar 

  79. Korponay-Szabó IR, Vecsei A, Kiraly R, Dahlbom I, Chirdo F, Nemes E, Fésüs L, Maki M (2008) Deamidated gliadin peptides form epitopes that transglutaminase antibodies recognize. J Pediatr Gastroenterol Nutr 46:253–261. https://doi.org/10.1097/mpg.0b013e31815ee555

    Article  PubMed  Google Scholar 

  80. Seissler J, Wohlrab U, Wuensche C, Scherbaum WA, Boehm BO (2001) Auto-antibodies from patients with coeliac disease recognize distinct functional domains of the autoantigen tissue transglutaminase. Clin Exp Immunol 125(2):216–221. https://doi.org/10.1046/j.1365-2249.2001.01584.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakachi K, Powell M, Swift G, Amoroso MA, Ananieva-Jordanova R, Arnold C, Sanders J, Furmaniak J, Rees Smith B (2004) Epitopes recognised by tissue transglutaminase antibodies in coeliac disease. J Autoimmun 22(1):53–63

    Article  CAS  Google Scholar 

  82. Sblattero D, Florian F, Azzoni E, Zyla T, Park M, Baldas V, Not T, Ventura A, Bradbury A, Marzari R (2002) The analysis of the fine specificity of celiac disease antibodies using tissue transglutaminase fragments. Eur J Biochem 269(21):5175–5181. https://doi.org/10.1046/j.1432-1033.2002.03215.x

    Article  CAS  PubMed  Google Scholar 

  83. Di Niro R, Ferrara F, Not T, Bradbury AR, Chirdo F, Marzari R, Sblattero D (2005) Characterizing monoclonal antibody epitopes by filtered gene fragment phage display. Biochem J 388(Pt 3):889–894. https://doi.org/10.1042/bj20041983

    Article  PubMed  PubMed Central  Google Scholar 

  84. Király R, Vecsei Z, Deményi T, Korponay-Szabó IR, Fésüs L (2006) Coeliac auto-antibodies can enhance transamidating and inhibit GTPase activity of tissue transglutaminase: dependence on reaction environment and enzyme fitness. J Autoimmun 26(4):278–287. https://doi.org/10.1016/j.jaut.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  85. Simon-Vecsei Z, Király R, Bagossi P, Tóth B, Dahlbom I, Caja S, Csosz É, Lindfors K, Sblattero D, Nemes É, Mäki M, Fésüs L, Korponay-Szabó IR (2012) A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci USA 109(2):431–436. https://doi.org/10.1073/pnas.1107811108

    Article  PubMed  Google Scholar 

  86. Di Pisa M, Buccato P, Sabatino G, Real Fernández F, Berti B, Cocola F, Papini AM, Rovero P (2014) Epitope mapping of the N-terminal portion of tissue transglutaminase protein antigen to identify linear epitopes in celiac disease. J Pept Sci 20(9):689–695. https://doi.org/10.1002/psc.2650

    Article  CAS  PubMed  Google Scholar 

  87. Chen X, Hnida K, Graewert MA, Andersen JT, Iversen R, Tuukkanen A, Svergun D, Sollid LM (2015) Structural basis for antigen recognition by transglutaminase 2-specific auto-antibodies in celiac disease. J Biol Chem 290(35):21365–21375. https://doi.org/10.1074/jbc.M115.669895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iversen R, Di Niro R, Stamnaes J, Lundin KE, Wilson PC, Sollid LM (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol 190(12):5981–5991. https://doi.org/10.4049/jimmunol.1300183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Byrne G, Ryan F, Jackson J, Feighery C, Kelly J (2007) Mutagenesis of the catalytic triad of tissue transglutaminase abrogates coeliac disease serum IgA autoantibody binding. Gut 56(3):336-41. https://doi.org/https://doi.org/10.1136/gut.2006.092908

    Article  CAS  Google Scholar 

  90. Telci D, Griffin M (2006) Tissue transglutaminase (TG2)—a wound response enzyme. Front Biosci 11:867–882

    Article  CAS  Google Scholar 

  91. Caputo I, Barone MV, Martucciello S, Lepretti M, Esposito C (2009) Tissue transglutaminase in celiac disease: role of autoantibodies. Amino Acids 36(4):693–699. https://doi.org/10.1007/s00726-008-0120-z

    Article  CAS  PubMed  Google Scholar 

  92. Halttunen T, Mäki M (1999) Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology 116(3):566–572

    Article  CAS  Google Scholar 

  93. Esposito C, Paparo F, Caputo I, Rossi M, Maglio M, Sblattero D, Not T, Porta R, Auricchio S, Marzari R, Troncone R (2002) Anti-tissue transglutaminase antibodies from coeliac patients inhibit transglutaminase activity both in vitro and in situ. Gut 51(2):177–181. https://doi.org/10.1136/gut.51.2.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dieterich W, Trapp D, Esslinger B, Leidenberger M, Piper J, Hahn E, Schuppan D (2003) Auto-antibodies of patients with coeliac disease are insufficient to block tissue transglutaminase activity. Gut 52(11):1562–1566. https://doi.org/10.1136/gut.52.11.1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Byrne G, Feighery C, Jackson J, Kelly J (2010) Coeliac disease auto-antibodies mediate significant inhibition of tissue transglutaminase. Clin Immunol 136(3):426–431. https://doi.org/10.1016/j.clim.2010.04.017

    Article  CAS  PubMed  Google Scholar 

  96. Anjum N, Baker PN, Robinson NJ, Aplin JD (2009) Maternal celiac disease auto-antibodies bind directly to syncytiotrophoblast and inhibit placental tissue transglutaminase activity. Reprod Biol Endocrinol 7:16. https://doi.org/10.1186/1477-7827-7-16

    Article  PubMed  PubMed Central  Google Scholar 

  97. Di Niro R, Mesin L, Zheng NY, Stamnaes J, Morrissey M, Lee JH, Huang M, Iversen R, du Pré MF, Qiao SW, Lundin KE, Wilson PC, Sollid LM (2012) High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat Med 18(3):441–445. https://doi.org/10.1038/nm.2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Myrsky E, Caja S, Simon-Vecsei Z, Korponay-Szabo IR, Nadalutti C, Collighan R, Mongeot A, Griffin M, Mäki M, Kaukinen K, Lindfors K (2009) Celiac disease IgA modulates vascular permeability in vitro through the activity of transglutaminase 2 and RhoA. Cell Mol Life Sci 66(20):3375–3385. https://doi.org/10.1007/s00018-009-0116-1

    Article  CAS  PubMed  Google Scholar 

  99. Caja S, Myrsky E, Korponay-Szabo IR, Nadalutti C, Sulic AM, Lavric M, Sblattero D, Marzari R, Collighan R, Mongeot A, Griffin M, Mäki M, Kaukinen K, Lindfors K (2010) Inhibition of transglutaminase 2 enzymatic activity ameliorates the anti-angiogenic effects of coeliac disease autoantibodies. Scand J Gastroenterol 45(4):421–427. https://doi.org/10.3109/00365520903540822

    Article  CAS  PubMed  Google Scholar 

  100. Kalliokoski S, Sulic AM, Korponay-Szabó IR, Szondy Z, Frias R, Perez MA, Martucciello S, Roivainen A, Pelliniemi LJ, Esposito C, Griffin M, Sblattero D, Mäki M, Kaukinen K, Lindfors K, Caja S (2013) Celiac disease-specific TG2-targeted auto-antibodies inhibit angiogenesis ex vivo and in vivo in mice by interfering with endothelial cell dynamics. PLoS One 8(6):e65887. https://doi.org/10.1371/journal.pone.0065887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barone MV, Caputo I, Ribecco MT, Maglio M, Marzari R, Sblattero D, Troncone R, Auricchio S, Esposito C (2007) Humoral immune response to tissue transglutaminase is related to epithelial cell proliferation in celiac disease. Gastroenterology 132(4):1245–1253. https://doi.org/10.1053/j.gastro.2007.01.030

    Article  CAS  PubMed  Google Scholar 

  102. Hnida K, Stamnaes J, du Pré MF, Mysling S, Jørgensen TJ, Sollid LM, Iversen R (2016) Epitope-dependent functional effects of celiac disease auto-antibodies on transglutaminase 2. J Biol Chem 291(49):25542–25552. https://doi.org/10.1074/jbc.M116.738161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iversen R, Mysling S, Hnida K, Jørgensen TJ, Sollid LM (2014) Activity-regulating structural changes and autoantibody epitopes in transglutaminase 2 assessed by hydrogen/deuterium exchange. Proc Natl Acad Sci USA 111(48):17146–17151. https://doi.org/10.1073/pnas.1407457111

    Article  CAS  PubMed  Google Scholar 

  104. Caputo I, Barone MV, Lepretti M, Martucciello S, Nista I, Troncone R, Auricchio S, Sblattero D, Esposito C (2010) Celiac anti-tissue transglutaminase antibodies interfere with the uptake of alpha gliadin peptide 31–43 but not of peptide 57–68 by epithelial cells. Biochim Biophys Acta 9:717–727. https://doi.org/10.1016/j.bbadis.2010.05.010

    Article  CAS  Google Scholar 

  105. Teesalu K, Panarina M, Uibo O, Uibo R, Utt M (2012) Autoantibodies from patients with celiac disease inhibit transglutaminase 2 binding to heparin/heparan sulfate and interfere with intestinal epithelial cell adhesion. Amino Acids 42(2–3):1055–1064. https://doi.org/10.1007/s00726-011-1020-1

    Article  CAS  PubMed  Google Scholar 

  106. Myrsky E, Kaukinen K, Syrjänen M, Korponay-Szabó IR, Mäki M, Lindfors K (2008) Coeliac disease-specific autoantibodies targeted against transglutaminase 2 disturb angiogenesis. Clin Exp Immunol 152(1):111–119. https://doi.org/10.1111/j.1365-2249.2008.03600.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nanayakkara M, Kosova R, Lania G, Sarno M, Gaito A, Galatola M, Greco L, Cuomo M, Troncone R, Auricchio S, Auricchio R, Barone MV (2013) A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43. PLoS One 8(11):e79763. https://doi.org/10.1371/journal.pone.0079763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Paolella G, Lepretti M, Barone MV, Nanayakkara M, Di Zenzo M, Sblattero D, Auricchio S, Esposito C, Caputo I (2017) Celiac anti-type 2 transglutaminase antibodies induce differential effects in fibroblasts from celiac disease patients and from healthy subjects. Amino Acid 49(3):541–550. https://doi.org/10.1007/s00726-016-2307-z

    Article  CAS  Google Scholar 

  109. Caputo I, Lepretti M, Secondo A, Martucciello S, Paolella G, Sblattero D, Barone MV, Esposito C (2013) Anti-tissue transglutaminase antibodies activate intracellular tissue transglutaminase by modulating cytosolic Ca2+ homeostasis. Amino Acids 44(1):251–260. https://doi.org/10.1007/s00726-011-1120-y

    Article  CAS  PubMed  Google Scholar 

  110. Caputo I, Secondo A, Lepretti M, Paolella G, Auricchio S, Barone MV, Esposito C (2012) Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells. PLoS One 7(9):e45209. https://doi.org/10.1371/journal.pone.0045209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Paolella G, Caputo I, Marabotti A, Lepretti M, Salzano AM, Scaloni A, Vitale M, Zambrano N, Sblattero D, Esposito C (2013) Celiac anti-type 2 transglutaminase antibodies induce phosphoproteome modification in intestinal epithelial Caco-2 cells. PLoS One 8(12):e84403. https://doi.org/10.1371/journal.pone.0084403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Myrsky E, Syrjänen M, Korponay-Szabo IR, Mäki M, Kaukinen K, Lindfors K (2009) Altered small-bowel mucosal vascular network in untreated coeliac disease. Scand J Gastroenterol 44(2):162–167. https://doi.org/10.1080/00365520802400875

    Article  CAS  PubMed  Google Scholar 

  113. Martucciello S, Lavric M, Toth B, Korponay-Szabo I, Nadalutti C, Myrsky E, Rauhavirta T, Esposito C, Sulic AM, Sblattero D, Marzari R, Mäki M, Kaukinen K, Lindfors K, Caja S (2012) RhoB is associated with the anti-angiogenic effects of celiac patient transglutaminase 2-targeted auto-antibodies. J Mol Med (Berl) 90(7):817–826. https://doi.org/10.1007/s00109-011-0853-0

    Article  CAS  Google Scholar 

  114. Lee YJ, Jung SH, Kim SH, Kim MS, Lee S, Hwang J, Kim SY, Kim YM, Ha KS (2016) Essential role of transglutaminase 2 in vascular endothelial growth factor-induced vascular leakage in the retina of diabetic mice. Diabetes 65(8):2414–2428. https://doi.org/10.2337/db15-1594

    Article  CAS  PubMed  Google Scholar 

  115. Adini I, Rabinovitz I, Sun JF, Prendergast GC, Benjamin LE (2003) Rho B controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev 17(21):2721–2732. https://doi.org/10.1101/gad.1134603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nadalutti CA, Korponay-Szabo IR, Kaukinen K, Griffin M, Mäki M, Lindfors K (2014) Celiac disease patient IgA antibodies induce endothelial adhesion and cell polarization defects via extracellular transglutaminase 2. Cell Mol Life Sci 71(7):1315–1326. https://doi.org/10.1007/s00018-013-1455-5

    Article  CAS  PubMed  Google Scholar 

  117. Moss SF, Attia L, Scholes JV, Walters JR, Holt PR (1996) Increased small intestinal apoptosis in coeliac disease. Gut 39(6):811–817

    Article  CAS  Google Scholar 

  118. Ciccocioppo R, Di Sabatino A, Parroni R, Muzi P, D’Alò S, Ventura T, Pistoia MA, Cifone MG, Corazza GR (2001) Increased enterocyte apoptosis and Fas-Fas ligand system in celiac disease. Am J Clin Pathol 115(4):494–503. https://doi.org/10.1309/uv54-bhp3-a66b-0qud

    Article  CAS  PubMed  Google Scholar 

  119. Hoffmanová I, Sánchez D, Hábová V, Anděl M, Tučková L, Tlaskalová-Hogenová H (2015) Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol Res 64(4):537–546

    PubMed  Google Scholar 

  120. Kalliokoski S, Piqueras VO, Frías R, Sulic AM, Määttä JA, Kähkönen N, Viiri K, Huhtala H, Pasternack A, Laurila K, Sblattero D, Korponay-Szabó IR, Mäki M, Caja S, Kaukinen K, Lindfors K (2017) Transglutaminase 2-specific coeliac disease auto-antibodies induce morphological changes and signs of inflammation in the small-bowel mucosa of mice. Amino Acids 49(3):529–540. https://doi.org/10.1007/s00726-016-2306-0

    Article  CAS  PubMed  Google Scholar 

  121. Sóñora C, Calo G, Fraccaroli L, Pérez-Leirós C, Hernández A, Ramhorst R (2014) Tissue transglutaminase on trophoblast cells as a possible target of auto-antibodies contributing to pregnancy complications in celiac patients. Am J Reprod Immunol 72(5):485–495. https://doi.org/10.1111/aji.12290

    Article  CAS  PubMed  Google Scholar 

  122. Cervio E, Volta U, Verri M, Boschi F, Pastoris O, Granito A, Barbara G, Parisi C, Felicani C, Tonini M, De Giorgio R (2007) Sera of patients with celiac disease and neurologic disorders evoke a mitochondrial-dependent apoptosis in vitro. Gastroenterology 133(1):195–206. https://doi.org/10.1053/j.gastro.2007.04.070

    Article  CAS  PubMed  Google Scholar 

  123. Rauhavirta T, Qiao SW, Jiang Z, Myrsky E, Loponen J, Korponay-Szabó IR, Salovaara H, Garcia-Horsman JA, Venäläinen J, Männistö PT, Collighan R, Mongeot A, Griffin M, Mäki M, Kaukinen K, Lindfors K (2011) Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clin Exp Immunol 164(1):127–136. https://doi.org/10.1111/j.1365-2249.2010.04317.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Paolella G, Lepretti M, Martucciello S, Nanayakkara M, Auricchio S, Esposito C, Barone MV, Caputo I (2018) The toxic alpha-gliadin peptide 31-43 enters cells without a surface membrane receptor. Cell biol Intern 42(1):112–120. https://doi.org/10.1002/cbin.10874

    Article  CAS  Google Scholar 

  125. Freitag T, Schulze-Koops H, Niedobitek G, Melino G, Schuppan D (2004) The role of the immune response against tissue transglutaminase in the pathogenesis of coeliac disease. Autoimmun Rev 3(2):13–20. https://doi.org/10.1016/s1568-9972(03)00054-5

    Article  CAS  PubMed  Google Scholar 

  126. Di Niro R, Sblattero D, Florian F, Stebel M, Zentilin L, Giacca M, Villanacci V, Galletti A, Not T, Ventura A, Marzari R (2008) Anti-idiotypic response in mice expressing human auto-antibodies. Mol Immunol 45(6):1782–1791. https://doi.org/10.1016/j.molimm.2007.09.025

    Article  CAS  PubMed  Google Scholar 

  127. Vangone A, Abdel-Azeim S, Caputo I, Sblattero D, Di Niro R, Cavallo L, Oliva R (2014) Structural basis for the recognition in an idiotype-anti-idiotype antibody complex related to celiac disease. PLoS One 9(7):e102839. https://doi.org/10.1371/journal.pone.0102839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tzioufas AG, Routsias JG (2010) Idiotype, anti-idiotype network of autoantibodies: pathogenetic considerations and clinical application. Autoimmun Rev 9:631–633

    Article  CAS  Google Scholar 

  129. Kalliokoski S, Caja S, Frias R, Laurila K, Koskinen O, Niemelä O, Mäki M, Kaukinen K, Korponay-Szabó IR, Lindfors K (2015) Injection of celiac disease patient sera or immunoglobulins to mice reproduces a condition mimicking early developing celiac disease. J Mol Med (Berl) 93(1):51–62. https://doi.org/10.1007/s00109-014-1204-8

    Article  CAS  Google Scholar 

  130. Hoffmanová I, Sánchez D, Tučková L, Tlaskalová-Hogenová H (2018) Celiac disease and liver disorders: from putative pathogenesis to clinical implications. Nutrients 10(7):E892. https://doi.org/10.3390/nu10070892

    Article  PubMed  Google Scholar 

  131. Hadjivassiliou M, Mäki M, Sanders DS, Williamson CA, Grünewald RA, Woodroofe NM, Korponay-Szabó IR (2006) Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology 66:373–377. https://doi.org/10.1212/01.wnl.0000196480.55601.3a

    Article  CAS  PubMed  Google Scholar 

  132. Boscolo S, Lorenzon A, Sblattero D, Florian F, Stebel M, Marzari R, Not T, Aeschlimann D, Ventura A, Hadjivassiliou M, Tongiorgi E (2010) Anti transglutaminase antibodies cause ataxia in mice. PLoS One 5(3):e9698. https://doi.org/10.1371/journal.pone.0009698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sugai E, Cherñavsky A, Pedreira S, Smecuol E, Vazquez H, Niveloni S, Mazure R, Mauriro E, Rabinovich GA, Bai JC (2002) Bone-specific antibodies in sera from patients with celiac disease: characterization and implications in osteoporosis. J Clin Immunol 22(6):353–362. https://doi.org/10.1023/A:1020786315956

    Article  CAS  PubMed  Google Scholar 

  134. Naiyer AJ, Shah J, Hernandez L, Kim SY, Ciaccio EJ, Cheng J, Manavalan S, Bhagat G, Green PH (2008) Tissue transglutaminase antibodies in individuals with celiac disease bind to thyroid follicles and extracellular matrix and may contribute to thyroid dysfunction. Thyroid 18(11):1171–1178. https://doi.org/10.1089/thy.2008.0110

    Article  CAS  PubMed  Google Scholar 

  135. Sategna-Guidetti C, Franco E, Martini S, Bobbio M (2004) Binding by serum IgA antibodies from patients with coeliac disease to monkey heart tissue. Scand J Gastroenterol 39(6):540–543. https://doi.org/10.1080/00365520410008764

    Article  CAS  PubMed  Google Scholar 

  136. Sane DC, Kontos JL, Greenberg CS (2007) Roles of transglutaminases in cardiac and vascular diseases. Front Biosci 12:2530–2545

    Article  CAS  Google Scholar 

  137. Lauret E, Rodrigo L (2013) Celiac disease and auto-immune-associated conditions. Biomed Res Int 2013:127589. https://doi.org/10.1155/2013/127589

    Article  PubMed  PubMed Central  Google Scholar 

  138. Collin P, Salmi TT, Hervonen K, Kaukinen K, Reunala T (2017) Dermatitis herpetiformis: a cutaneous manifestation of coeliac disease. Ann Med 49(1):23–31. https://doi.org/10.1080/07853890.2016.1222450

    Article  CAS  PubMed  Google Scholar 

  139. Hällström O (1989) Comparison of IgA-class reticulin and endomysium antibodies in coeliac disease and dermatitis herpetiformis. Gut 30:1225–1232

    Article  Google Scholar 

  140. Salmi TT, Hervonen K, Laurila K, Collin P, Mäki M, Koskinen O, Huhtala H, Kaukinen K, Reunala T (2014) Small bowel transglutaminase 2-specific IgA deposits in dermatitis herpetiformis. Acta Derm Venereol 94:393–397. https://doi.org/10.2340/00015555-1764

    Article  PubMed  Google Scholar 

  141. Rose C, Armbruster FP, Ruppert J, Igl BW, Zillikens D, Shimanovich I (2009) Auto-antibodies against epidermal transglutaminase are a sensitive diagnostic marker in patients with dermatitis herpetiformis on a normal or gluten-free diet. J Am Acad Dermatol 61(1):39–43. https://doi.org/10.1016/j.jaad.2008.12.037

    Article  CAS  PubMed  Google Scholar 

  142. Reunala T, Salmi TT, Hervonen K (2015) Dermatitis herpetiformis: pathognomonic transglutaminase IgA deposits in the skin and excellent prognosis on a gluten-free diet. Acta Derm Venereol 95(8):917–922. https://doi.org/10.2340/00015555-2162

    Article  CAS  PubMed  Google Scholar 

  143. Marietta EV, Camilleri MJ, Castro LA, Krause PK, Pittelkow MR, Murray JA (2008) Transgluaminase auto-antibodies in dermatitis herpetiformis and celiac sprue. J Invest Dermatol 128:332–335. https://doi.org/10.1038/sj.jid.5701041

    Article  CAS  PubMed  Google Scholar 

  144. Jackson JR, Eaton WW, Cascella NG, Fasano A, Kelly DL (2012) Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatr Q 83(1):91–102. https://doi.org/10.1007/s11126-011-9186-y

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hadjivassiliou M, Aeschlimann P, Sanders DS, Mäki M, Kaukinen K, Grünewald RA, Bandmann O, Woodroofe N, Haddock G, Aeschlimann DP (2013) Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. Neurology 80(19):1740–1745. https://doi.org/10.1212/WNL.0b013e3182919070

    Article  CAS  PubMed  Google Scholar 

  146. Zis P, Rao DG, Sarrigiannis PG, Aeschlimann P, Aeschlimann DP, Sanders D, Grünewald RA, Hadjivassiliou M (2017) Transglutaminase 6 antibodies in gluten neuropathy. Dig Liver Dis 49(11):1196–1200. https://doi.org/10.1016/j.dld.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  147. De Leo L, Aeschlimann D, Hadjivassiliou M, Aeschlimann P, Salce N, Vatta S, Ziberna F, Cozzi G, Martelossi S, Ventura A, Not T (2018) Anti-transglutaminase 6 antibody development in children with celiac disease correlates with duration of gluten exposure. J Pediatr Gastroenterol Nutr 66:64–68. https://doi.org/10.1097/MPG.0000000000001642

    Article  CAS  PubMed  Google Scholar 

  148. Stamnaes J, Dorum S, Fleckenstein B, Aeschlimann D, Sollid LM (2010) Gluten T cell epitope targeting by TG3 and TG6; implications for dermatitis herpetiformis and gluten ataxia. Amino Acids 39(5):1183–1191. https://doi.org/10.1007/s00726-010-0554-y

    Article  CAS  PubMed  Google Scholar 

  149. Collin P, Kaukinen K, Välimäki M, Salmi J (2002) Endocrinological disorders and celiac disease. Endocr Rev 23:464–483. https://doi.org/10.1210/er.2001-0035

    Article  CAS  PubMed  Google Scholar 

  150. Lampasona V, Bonfanti R, Bazzigaluppi E, Venerando A, Chiumello G, Bosi E, Bonifacio E (1999) Antibodies to tissue TGase C in type I diabetes. Diabetologia 42:1195–1198. https://doi.org/10.1007/s001250051291

    Article  CAS  PubMed  Google Scholar 

  151. Camarca ME, Mozzillo E, Nugnes R, Zito E, Falco M, Fattorusso V, Mobilia S, Buono P, Valerio G, Troncone R, Franzese A (2012) Celiac disease in type 1 diabetes mellitus. Ital J Pediatr 38:10. https://doi.org/10.1186/1824-7288-38-10

    Article  PubMed  PubMed Central  Google Scholar 

  152. Cohn A, Sofia AM, Kupfer SS (2014) Type 1 diabetes and celiac disease: clinical overlap and new insights into disease pathogenesis. Curr Diab Rep 14(8):517. https://doi.org/10.1007/s11892-014-0517-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bao F, Yu L, Babu S, Wang T, Hoffenberg EJ, Rewers M, Eisenbarth GS (1999) One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase auto-antibodies. J Autoimmun 13(1):143–148. https://doi.org/10.1006/jaut.1999.0303

    Article  CAS  PubMed  Google Scholar 

  154. McGinty JW, Marré ML, Bajzik V, Piganelli JD, James EA (2015) T cell epitopes and post-translationally modified epitopes in type 1 diabetes. Curr Diab Rep 15(11):90. https://doi.org/10.1007/s11892-015-0657-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ch’ng CL, Biswas M, Benton A, Jones MK, Kingham JGC (2005) Prospective screening for coeliac disease in patients with Graves’ hyperthyroidism using anti-gliadin and tissue transglutaminase antibodies. Clin Endocrinol (Oxf) 62(3):303–306. https://doi.org/10.1111/j.1365-2265.2005.02214.x

    Article  Google Scholar 

  156. Hadithi M, de Boer H, Meijer JW, Willekens F, Kerckhaert JA, Heijmans R, Peña AS, Stehouwer CD, Mulder CJ (2007) Coeliac disease in Dutch patients with Hashimoto’s thyroiditis and vice versa. World J Gastroenterol 13:1715–1722. https://doi.org/10.3748/wjg.v13.i11.1715

    Article  PubMed  PubMed Central  Google Scholar 

  157. Elfström P, Montgomery SM, Kampe O, Ekbom A, Ludvigsson JF (2008) Risk of thyroid disease in individuals with celiac disease. J Clin Endocrinol Metab 93:3915–3921. https://doi.org/10.1210/jc.2008-0798

    Article  CAS  PubMed  Google Scholar 

  158. Badenhoop K, Dieterich W, Segni M, Hofmann S, Hüfner M, Usadel KH, Hahn EG, Schuppan D (2001) HLA DQ2 and/or DQ8 is associated with celiac disease-specific auto-antibodies to tissue transglutaminase in families with thyroid autoimmunity. Am J Gastroenterol 96(5):1648–1649. https://doi.org/10.1111/j.1572-0241.2001.03821.x

    Article  CAS  PubMed  Google Scholar 

  159. Luft LM, Barr SG, Martin LO, Chan EKL, Fritzler MJ (2003) Auto-antibodies to tissue transglutaminase in Sjögren’s syndrome and related rheumatic diseases. J Rheumatol 30:2613–2619

    CAS  PubMed  Google Scholar 

  160. Marai I, Shoenfeld Y, Bizzaro N, Villalta D, Doria A, Tonutti E, Tozzoli R (2004) IgA and IgG tissue transglutaminase antibodies in systemic lupus erythematosus. Lupus 13:241–244. https://doi.org/10.1191/0961203304lu1004oa

    Article  CAS  PubMed  Google Scholar 

  161. Lerner A, Prager K, Matthias T (2015) Transient anti TG2 auto-antibodies in systemic lupus erythematosus: a window to autoimmunity. Int J Celiac Dis 3:72–74. https://doi.org/10.12691/ijcd-3-2-11

    Article  Google Scholar 

  162. Ferrara F, Quaglia S, Caputo I, Esposito C, Lepretti M, Pastore S, Giorgi R, Martelossi S, Dal Molin G, Di Toro N, Ventura A, Not T (2010) Anti-transglutaminase antibodies in non-coeliac children suffering from infectious diseases. Clin Exp Immunol 159(2):212–217. https://doi.org/10.1111/j.1365-2249.2009.04054.x

    Article  CAS  Google Scholar 

  163. Roth EB, Stenberg P, Book C, Sjöberg K (2006) Antibodies against transglutaminases, peptidylarginine deiminase and citrulline in rheumatoid arthritis—new pathways to epitope spreading. Clin Exp Rheumatol 24:12–18

    CAS  PubMed  Google Scholar 

  164. Dahan S, Shor DB, Comaneshter D, Tekes-Manova D, Shovman O, Amital H, Cohen AD (2016) All disease begins in the gut: celiac disease co-existence with SLE. Autoimmun Rev 15:848–853. https://doi.org/10.1016/j.autrev.2016.06.003

    Article  PubMed  Google Scholar 

  165. Picarelli A, Di Tola M, Sabbatella L, Vetrano S, Anania MC, Spadaro A, Sorgi ML, Taccari E (2003) Anti-tissue transglutaminase antibodies in arthritic patients: a disease-specific finding? Clin Chem 49(12):2091–2094. https://doi.org/10.1373/clinchem.2003.023234

    Article  CAS  PubMed  Google Scholar 

  166. Király R, Csosz E, Kurtán T, Antus S, Szigeti K, Simon-Vecsei Z, Korponay-Szabó IR, Keresztessy Z, Fésüs L (2009) Functional significance of five noncanonical Ca2+-binding sites of human transglutaminase 2 characterized by site-directed mutagenesis. FEBS J 276(23):7083–7096. https://doi.org/10.1111/j.1742-4658.2009.07420.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Caputo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martucciello, S., Paolella, G., Esposito, C. et al. Anti-type 2 transglutaminase antibodies as modulators of type 2 transglutaminase functions: a possible pathological role in celiac disease. Cell. Mol. Life Sci. 75, 4107–4124 (2018). https://doi.org/10.1007/s00018-018-2902-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2902-0

Keywords

Navigation