Skip to main content

Advertisement

Log in

Dsg2 via Src-mediated transactivation shapes EGFR signaling towards cell adhesion

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

A Correction to this article was published on 10 July 2019

This article has been updated

Abstract

Rapidly renewing epithelial tissues such as the intestinal epithelium require precise tuning of intercellular adhesion and proliferation to preserve barrier integrity. Here, we provide evidence that desmoglein 2 (Dsg2), an adhesion molecule of desmosomes, controls cell adhesion and proliferation via epidermal growth factor receptor (EGFR) signaling. Dsg2 is required for EGFR localization at intercellular junctions as well as for Src-mediated EGFR activation. Src binds to EGFR and is required for localization of EGFR and Dsg2 to cell–cell contacts. EGFR is critical for cell adhesion and barrier recovery. In line with this, Dsg2-deficient enterocytes display impaired barrier properties and increased cell proliferation. Mechanistically, Dsg2 directly interacts with EGFR and undergoes heterotypic-binding events on the surface of living enterocytes via its extracellular domain as revealed by atomic force microscopy. Thus, our study reveals a new mechanism by which Dsg2 via Src shapes EGFR function towards cell adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 10 July 2019

    In the published article, the legend for figure��3 was incorrect. The correct legend is given below.

  • 10 July 2019

    In the published article, the legend for figure��3 was incorrect. The correct legend is given below.

Abbreviations

AFM:

Atomic force microscopy

AJ:

Adherens junction

Cld4:

Claudin 4

Dsc2:

Desmocollin 2

Dsg2:

Desmoglein

DP:

Desmoplakin

Ecad:

E-cadherin

EGFR:

Epidermal growth factor receptor

MAPK:

Mitogen-activated protein kinase

PG:

Plakoglobin

Pkp:

Plakophilin

RTK:

Receptor tyrosine kinase

STED:

Stimulated emission depletion microscopy

TER:

Transepithelial resistance

TJ:

Tight junction

WT:

Wild type

References

  1. Cerf-Bensussan N, Gaboriau-Routhiau V (2010) The immune system and the gut microbiota: friends or foes? Nat Rev Immunol 10:735–744

    Article  CAS  Google Scholar 

  2. Helander HF, Fandriks L (2014) Surface area of the digestive tract—revisited. Scand J Gastroenterol 49:681–689

    Article  Google Scholar 

  3. Gayer CP, Basson MD (2009) The effects of mechanical forces on intestinal physiology and pathology. Cell Signal 21:1237–1244

    Article  CAS  Google Scholar 

  4. Sancho E, Batlle E, Clevers H (2004) Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol 20:695–723

    Article  CAS  Google Scholar 

  5. Capaldo CT, Farkas AE, Nusrat A (2014) Epithelial adhesive junctions. F1000Prime Rep 6:1

    Article  Google Scholar 

  6. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375

    Article  CAS  Google Scholar 

  7. Green KJ, Simpson CL (2007) Desmosomes: new perspectives on a classic. J Investig Dermatol 127:2499–2515

    Article  CAS  Google Scholar 

  8. Brennan D, Hu Y, Joubeh S, Choi YW, Whitaker-Menezes D, O’Brien T, Uitto J, Rodeck U, Mahoney MG (2007) Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J Cell Sci 120:758–771

    Article  CAS  Google Scholar 

  9. Getsios S, Simpson CL, Kojima S, Harmon R, Sheu LJ, Dusek RL, Cornwell M, Green KJ (2009) Desmoglein 1-dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. J Cell Biol 185:1243–1258

    Article  CAS  Google Scholar 

  10. Nava P, Laukoetter MG, Hopkins AM, Laur O, Gerner-Smidt K, Green KJ, Parkos CA, Nusrat A (2007) Desmoglein-2: a novel regulator of apoptosis in the intestinal epithelium. Mol Biol Cell 18:4565–4578

    Article  CAS  Google Scholar 

  11. Spindler V, Waschke J (2014) Desmosomal cadherins and signaling: lessons from autoimmune disease. Cell Commun Adhes 21:77–84

    Article  CAS  Google Scholar 

  12. Owen GR, Stokes DL (2010) Exploring the nature of desmosomal cadherin associations in 3D. Dermatol Res Pract 2010:930401

    Article  Google Scholar 

  13. Holthofer B, Windoffer R, Troyanovsky S, Leube RE (2007) Structure and function of desmosomes. Int Rev Cytol 264:65–163

    Article  Google Scholar 

  14. Koch PJ, Goldschmidt MD, Zimbelmann R, Troyanovsky R, Franke WW (1992) Complexity and expression patterns of the desmosomal cadherins. Proc Natl Acad Sci USA 89:353–357

    Article  CAS  Google Scholar 

  15. Waschke J (2008) The desmosome and pemphigus. Histochem Cell Biol 130:21–54

    Article  CAS  Google Scholar 

  16. Fujiwara M, Nagatomo A, Tsuda M, Obata S, Sakuma T, Yamamoto T, Suzuki ST (2015) Desmocollin-2 alone forms functional desmosomal plaques, with the plaque formation requiring the juxtamembrane region and plakophilins. J Biochem 158:339–353

    Article  CAS  Google Scholar 

  17. Biedermann K, Vogelsang H, Becker I, Plaschke S, Siewert JR, Hofler H, Keller G (2005) Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. J Pathol 207:199–206

    Article  CAS  Google Scholar 

  18. Schlegel N, Meir M, Heupel WM, Holthofer B, Leube RE, Waschke J (2010) Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 298:G774–G783

    Article  CAS  Google Scholar 

  19. Spindler V, Meir M, Vigh B, Flemming S, Hutz K, Germer CT, Waschke J, Schlegel N (2015) Loss of desmoglein 2 contributes to the pathogenesis of Crohn’s disease. Inflamm Bowel Dis 21:2349–2359

    PubMed  Google Scholar 

  20. Ungewiss H, Vielmuth F, Suzuki ST, Maiser A, Harz H, Leonhardt H, Kugelmann D, Schlegel N, Waschke J (2017) Desmoglein 2 regulates the intestinal epithelial barrier via p38 mitogen-activated protein kinase. Sci Rep 7:6329

    Article  Google Scholar 

  21. Kamekura R, Nava P, Feng M, Quiros M, Nishio H, Weber DA, Parkos CA, Nusrat A (2015) Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier. Mol Biol Cell 26:3165–3177

    Article  CAS  Google Scholar 

  22. Overmiller AM, McGuinn KP, Roberts BJ, Cooper F, Brennan-Crispi DM, Deguchi T, Peltonen S, Wahl JK 3rd, Mahoney MG (2016) c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget 7:37536–37555

    Article  Google Scholar 

  23. Wheelock MJ, Johnson KR (2003) Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 19:207–235

    Article  CAS  Google Scholar 

  24. Yap AS, Crampton MS, Hardin J (2007) Making and breaking contacts: the cellular biology of cadherin regulation. Curr Opin Cell Biol 19:508–514

    Article  CAS  Google Scholar 

  25. Honegger AM, Kris RM, Ullrich A, Schlessinger J (1989) Evidence that autophosphorylation of solubilized receptors for epidermal growth factor is mediated by intermolecular cross-phosphorylation. Proc Natl Acad Sci USA 86:925–929

    Article  CAS  Google Scholar 

  26. Kaplan M, Narasimhan S, de Heus C, Mance D, van Doorn S, Houben K, Popov-Celeketic D, Damman R, Katrukha EA, Jain P et al (2016) EGFR dynamics change during activation in native membranes as revealed by NMR. Cell 167(1241–1251):e1211

    Google Scholar 

  27. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  Google Scholar 

  28. Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M et al (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–787

    Article  CAS  Google Scholar 

  29. Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    Article  CAS  Google Scholar 

  30. Klessner JL, Desai BV, Amargo EV, Getsios S, Green KJ (2009) EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol Biol Cell 20:328–337

    Article  CAS  Google Scholar 

  31. Lorch JH, Klessner J, Park JK, Getsios S, Wu YL, Stack MS, Green KJ (2004) Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells. J Biol Chem 279:37191–37200

    Article  CAS  Google Scholar 

  32. Kamekura R, Kolegraff KN, Nava P, Hilgarth RS, Feng M, Parkos CA, Nusrat A (2014) Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene 33:4531–4536

    Article  CAS  Google Scholar 

  33. Blay J, Brown KD (1985) Epidermal growth factor promotes the chemotactic migration of cultured rat intestinal epithelial cells. J Cell Physiol 124:107–112

    Article  CAS  Google Scholar 

  34. Miguel JC, Maxwell AA, Hsieh JJ, Harnisch LC, Al Alam D, Polk DB, Lien CL, Watson AJ, Frey MR (2017) Epidermal growth factor suppresses intestinal epithelial cell shedding through a MAPK-dependent pathway. J Cell Sci 130:90–96

    Article  CAS  Google Scholar 

  35. Polk DB (1998) Epidermal growth factor receptor-stimulated intestinal epithelial cell migration requires phospholipase C activity. Gastroenterology 114:493–502

    Article  CAS  Google Scholar 

  36. Bishop WP, Wen JT (1994) Regulation of Caco-2 cell proliferation by basolateral membrane epidermal growth factor receptors. Am J Physiol 267:G892–G900

    CAS  PubMed  Google Scholar 

  37. Scheving LA, Shiurba RA, Nguyen TD, Gray GM (1989) Epidermal growth factor receptor of the intestinal enterocyte. Localization to laterobasal but not brush border membrane. J Biol Chem 264:1735–1741

    CAS  PubMed  Google Scholar 

  38. Carpenter G, Cohen S (1976) 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol 71:159–171

    Article  CAS  Google Scholar 

  39. Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y (1998) c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12:3663–3674

    Article  CAS  Google Scholar 

  40. Moro L, Dolce L, Cabodi S, Bergatto E, Boeri Erba E, Smeriglio M, Turco E, Retta SF, Giuffrida MG, Venturino M et al (2002) Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 277:9405–9414

    Article  CAS  Google Scholar 

  41. Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ (1999) c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274:8335–8343

    Article  CAS  Google Scholar 

  42. Maa MC, Leu TH, McCarley DJ, Schatzman RC, Parsons SJ (1995) Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci USA 92:6981–6985

    Article  CAS  Google Scholar 

  43. Sato K, Sato A, Aoto M, Fukami Y (1995) c-Src phosphorylates epidermal growth factor receptor on tyrosine 845. Biochem Biophys Res Commun 215:1078–1087

    Article  CAS  Google Scholar 

  44. Balanis N, Yoshigi M, Wendt MK, Schiemann WP, Carlin CR (2011) beta3 integrin-EGF receptor cross-talk activates p190RhoGAP in mouse mammary gland epithelial cells. Mol Biol Cell 22:4288–4301

    Article  CAS  Google Scholar 

  45. Rotzer V, Hartlieb E, Vielmuth F, Gliem M, Spindler V, Waschke J (2015) E-cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion. Cell Mol Life Sci 72:4885–4897

    Article  Google Scholar 

  46. Bogdan S, Klambt C (2001) Epidermal growth factor receptor signaling. Curr Biol 11:R292–R295

    Article  CAS  Google Scholar 

  47. Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19:2474–2488

    Article  CAS  Google Scholar 

  48. Massague J, Pandiella A (1993) Membrane-anchored growth factors. Annu Rev Biochem 62:515–541

    Article  CAS  Google Scholar 

  49. Chung BM, Dimri M, George M, Reddi AL, Chen G, Band V, Band H (2009) The role of cooperativity with Src in oncogenic transformation mediated by non-small cell lung cancer-associated EGF receptor mutants. Oncogene 28:1821–1832

    Article  CAS  Google Scholar 

  50. Jung J, Kim HY, Kim M, Sohn K, Kim M, Lee K (2011) Translationally controlled tumor protein induces human breast epithelial cell transformation through the activation of Src. Oncogene 30:2264–2274

    Article  CAS  Google Scholar 

  51. Jung O, Choi YJ, Kwak TK, Kang M, Lee MS, Ryu J, Kim HJ, Lee JW (2013) The COOH-terminus of TM4SF5 in hepatoma cell lines regulates c-Src to form invasive protrusions via EGFR Tyr845 phosphorylation. Biochim Biophys Acta 1833:629–642

    Article  CAS  Google Scholar 

  52. Kannangai R, Sahin F, Torbenson MS (2006) EGFR is phosphorylated at Ty845 in hepatocellular carcinoma. Mod Pathol 19:1456–1461

    Article  CAS  Google Scholar 

  53. Cvrljevic AN, Akhavan D, Wu M, Martinello P, Furnari FB, Johnston AJ, Guo D, Pike L, Cavenee WK, Scott AM et al (2011) Activation of Src induces mitochondrial localisation of de2-7EGFR (EGFRvIII) in glioma cells: implications for glucose metabolism. J Cell Sci 124:2938–2950

    Article  CAS  Google Scholar 

  54. Nair VD, Sealfon SC (2003) Agonist-specific transactivation of phosphoinositide 3-kinase signaling pathway mediated by the dopamine D2 receptor. J Biol Chem 278:47053–47061

    Article  CAS  Google Scholar 

  55. Ray RM, Bhattacharya S, Johnson LR (2007) EGFR plays a pivotal role in the regulation of polyamine-dependent apoptosis in intestinal epithelial cells. Cell Signal 19:2519–2527

    Article  CAS  Google Scholar 

  56. Tice DA, Biscardi JS, Nickles AL, Parsons SJ (1999) Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci USA 96:1415–1420

    Article  CAS  Google Scholar 

  57. Bakker J, Spits M, Neefjes J, Berlin I (2017) The EGFR odyssey—from activation to destruction in space and time. J Cell Sci 130:4087–4096

    Article  CAS  Google Scholar 

  58. Francavilla C, Papetti M, Rigbolt KT, Pedersen AK, Sigurdsson JO, Cazzamali G, Karemore G, Blagoev B, Olsen JV (2016) Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat Struct Mol Biol 23:608–618

    Article  CAS  Google Scholar 

  59. Haugh JM, Huang AC, Wiley HS, Wells A, Lauffenburger DA (1999) Internalized epidermal growth factor receptors participate in the activation of p21(ras) in fibroblasts. J Biol Chem 274:34350–34360

    Article  CAS  Google Scholar 

  60. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089

    Article  CAS  Google Scholar 

  61. Wu P, Wee P, Jiang J, Chen X, Wang Z (2012) Differential regulation of transcription factors by location-specific EGF receptor signaling via a spatio-temporal interplay of ERK activation. PLoS One 7:e41354

    Article  CAS  Google Scholar 

  62. Brand TM, Iida M, Luthar N, Starr MM, Huppert EJ, Wheeler DL (2013) Nuclear EGFR as a molecular target in cancer. Radiother Oncol 108:370–377

    Article  CAS  Google Scholar 

  63. Kamio T, Shigematsu K, Sou H, Kawai K, Tsuchiyama H (1990) Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum Pathol 21:277–282

    Article  CAS  Google Scholar 

  64. Gonnella PA, Siminoski K, Murphy RA, Neutra MR (1987) Transepithelial transport of epidermal growth factor by absorptive cells of suckling rat ileum. J Clin Investig 80:22–32

    Article  CAS  Google Scholar 

  65. Kelly D, McFadyen M, King TP, Morgan PJ (1992) Characterization and autoradiographic localization of the epidermal growth factor receptor in the jejunum of neonatal and weaned pigs. Reprod Fertil Dev 4:183–191

    Article  CAS  Google Scholar 

  66. Yoo BK, He P, Lee SJ, Yun CC (2011) Lysophosphatidic acid 5 receptor induces activation of Na(+)/H(+) exchanger 3 via apical epidermal growth factor receptor in intestinal epithelial cells. Am J Physiol Cell Physiol 301:C1008–C1016

    Article  CAS  Google Scholar 

  67. Garrod D, Chidgey M (2008) Desmosome structure, composition and function. Biochim Biophys Acta 1778:572–587

    Article  CAS  Google Scholar 

  68. Mahoney MG, Hu Y, Brennan D, Bazzi H, Christiano AM, Wahl JK 3rd (2006) Delineation of diversified desmoglein distribution in stratified squamous epithelia: implications in diseases. Exp Dermatol 15:101–109

    Article  CAS  Google Scholar 

  69. Rubsam M, Mertz AF, Kubo A, Marg S, Jungst C, Goranci-Buzhala G, Schauss AC, Horsley V, Dufresne ER, Moser M et al (2017) E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun 8:1250

    Article  Google Scholar 

  70. Yashiro M, Nishioka N, Hirakawa K (2006) Decreased expression of the adhesion molecule desmoglein-2 is associated with diffuse-type gastric carcinoma. Eur J Cancer 42:2397–2403

    Article  CAS  Google Scholar 

  71. Godek J, Sargiannidou I, Patel S, Hurd L, Rothman VL, Tuszynski GP (2011) Angiocidin inhibits breast cancer proliferation through activation of epidermal growth factor receptor and nuclear factor kappa (NF-kB). Exp Mol Pathol 90:244–251

    Article  CAS  Google Scholar 

  72. Sato K, Nagao T, Iwasaki T, Nishihira Y, Fukami Y (2003) Src-dependent phosphorylation of the EGF receptor Tyr-845 mediates Stat-p21waf1 pathway in A431 cells. Genes Cells 8:995–1003

    Article  CAS  Google Scholar 

  73. Kolegraff K, Nava P, Helms MN, Parkos CA, Nusrat A (2011) Loss of desmocollin-2 confers a tumorigenic phenotype to colonic epithelial cells through activation of Akt/beta-catenin signaling. Mol Biol Cell 22:1121–1134

    Article  CAS  Google Scholar 

  74. Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou A, Bicknell D, Bodmer WF, Tomlinson IP (2000) APC mutations in sporadic colorectal tumors: a mutational “hotspot” and interdependence of the “two hits”. Proc Natl Acad Sci USA 97:3352–3357

    Article  CAS  Google Scholar 

  75. Yang J, Zhang W, Evans PM, Chen X, He X, Liu C (2006) Adenomatous polyposis coli (APC) differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem 281:17751–17757

    Article  CAS  Google Scholar 

  76. Guturi KK, Mandal T, Chatterjee A, Sarkar M, Bhattacharya S, Chatterjee U, Ghosh MK (2012) Mechanism of beta-catenin-mediated transcriptional regulation of epidermal growth factor receptor expression in glycogen synthase kinase 3 beta-inactivated prostate cancer cells. J Biol Chem 287:18287–18296

    Article  CAS  Google Scholar 

  77. Jean C, Blanc A, Prade-Houdellier N, Ysebaert L, Hernandez-Pigeon H, Al Saati T, Haure MJ, Coluccia AM, Charveron M, Delabesse E et al (2009) Epidermal growth factor receptor/beta-catenin/T cell factor 4/matrix metalloproteinase 1: a new pathway for regulating keratinocyte invasiveness after UVA irradiation. Cancer Res 69:3291–3299

    Article  CAS  Google Scholar 

  78. Lu Z, Ghosh S, Wang Z, Hunter T (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4:499–515

    Article  CAS  Google Scholar 

  79. Tan X, Apte U, Micsenyi A, Kotsagrelos E, Luo JH, Ranganathan S, Monga DK, Bell A, Michalopoulos GK, Monga SP (2005) Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver. Gastroenterology 129:285–302

    Article  CAS  Google Scholar 

  80. van Veelen W, Le NH, Helvensteijn W, Blonden L, Theeuwes M, Bakker ER, Franken PF, van Gurp L, Meijlink F, van der Valk MA et al (2011) beta-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut 60:1204–1212

    Article  Google Scholar 

  81. Yue X, Lan F, Yang W, Yang Y, Han L, Zhang A, Liu J, Zeng H, Jiang T, Pu P et al (2010) Interruption of beta-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res 1366:27–37

    Article  CAS  Google Scholar 

  82. Vergarajauregui S, San Miguel A, Puertollano R (2006) Activation of p38 mitogen-activated protein kinase promotes epidermal growth factor receptor internalization. Traffic 7:686–698

    Article  CAS  Google Scholar 

  83. Frey MR, Dise RS, Edelblum KL, Polk DB (2006) p38 kinase regulates epidermal growth factor receptor downregulation and cellular migration. EMBO J 25:5683–5692

    Article  CAS  Google Scholar 

  84. Frey MR, Golovin A, Polk DB (2004) Epidermal growth factor-stimulated intestinal epithelial cell migration requires Src family kinase-dependent p38 MAPK signaling. J Biol Chem 279:44513–44521

    Article  CAS  Google Scholar 

  85. Kuwada SK, Lund KA, Li XF, Cliften P, Amsler K, Opresko LK, Wiley HS (1998) Differential signaling and regulation of apical vs. basolateral EGFR in polarized epithelial cells. Am J Physiol 275:C1419–C1428

    Article  CAS  Google Scholar 

  86. Alexander RJ, Panja A, Kaplan-Liss E, Mayer L, Raicht RF (1995) Expression of growth factor receptor-encoded mRNA by colonic epithelial cells is altered in inflammatory bowel disease. Dig Dis Sci 40:485–494

    Article  CAS  Google Scholar 

  87. Beck PL, Podolsky DK (1999) Growth factors in inflammatory bowel disease. Inflamm Bowel Dis 5:44–60

    Article  CAS  Google Scholar 

  88. Potten CS, Owen G, Hewitt D, Chadwick CA, Hendry H, Lord BI, Woolford LB (1995) Stimulation and inhibition of proliferation in the small intestinal crypts of the mouse after in vivo administration of growth factors. Gut 36:864–873

    Article  CAS  Google Scholar 

  89. Janmaat ML, Giaccone G (2003) The epidermal growth factor receptor pathway and its inhibition as anticancer therapy. Drugs Today (Barc) 39(Suppl C):61–80

    CAS  Google Scholar 

  90. Kaiser GC, Polk DB (1997) Tumor necrosis factor alpha regulates proliferation in a mouse intestinal cell line. Gastroenterology 112:1231–1240

    Article  CAS  Google Scholar 

  91. McElroy SJ, Frey MR, Yan F, Edelblum KL, Goettel JA, John S, Polk DB (2008) Tumor necrosis factor inhibits ligand-stimulated EGF receptor activation through a TNF receptor 1-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 295:G285–G293

    Article  CAS  Google Scholar 

  92. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  93. Geiger Joerg BS, Stefan Kircher, Michael Neumann, Andreas Rosenwald, Roland Jahns (2018) Hospital-integrated biobanking as a service—the Interdisciplinary Bank of Biomaterials and Data Wuerzburg (IBDW). Open J Bioresour 5:6

    Article  Google Scholar 

  94. Schweinlin M, Wilhelm S, Schwedhelm I, Hansmann J, Rietscher R, Jurowich C, Walles H, Metzger M (2016) Development of an advanced primary human in vitro model of the small intestine. Tissue Eng Part C Methods 22:873–883

    Article  CAS  Google Scholar 

  95. Vielmuth F, Hartlieb E, Kugelmann D, Waschke J, Spindler V (2015) Atomic force microscopy identifies regions of distinct desmoglein 3 adhesive properties on living keratinocytes. Nanomedicine 11:511–520

    Article  CAS  Google Scholar 

  96. Andreas E, Linda W, Christian R, Jürgen W, Martin H, Rong Z, Ferry K, Dieter B et al (2007) A new simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate Chem. 18:1176–1184

    Article  Google Scholar 

  97. Gehmlich K, Asimaki A, Cahill TJ, Ehler E, Syrris P, Zachara E, Re F, Avella A, Monserrat L, Saffitz JE et al (2010) Novel missense mutations in exon 15 of desmoglein-2: role of the intracellular cadherin segment in arrhythmogenic right ventricular cardiomyopathy? Heart Rhythm 7:1446–1453

    Article  Google Scholar 

  98. Hong TT, Smyth JW, Gao D, Chu KY, Vogan JM, Fong TS, Jensen BC, Colecraft HM, Shaw RM (2010) BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol 8:e1000312

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG priority program SPP 1782. DLD1 cells were a gift from S.T. Suzuki (Kwansei Gakuin University, Japan). STED microscopy was performed in the lab of H. Leonhardt (Ludwig-Maximilians-University, Munich). The authors would like to thank Andreas Meiser and Hartmann Harz for their assistance in STED sample preparation and image acquisition.

Author information

Authors and Affiliations

Authors

Contributions

HU and JW designed the study. HU performed and analyzed the experiments. VR performed the hanging drop bead aggregation assay. MM obtained and prepared the human tissue samples. CF generated the enteroids. MD generated the Dsg2-deficient Caco2 cell line. All authors interpreted the data. HU wrote the manuscript and prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jens Waschke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungewiß, H., Rötzer, V., Meir, M. et al. Dsg2 via Src-mediated transactivation shapes EGFR signaling towards cell adhesion. Cell. Mol. Life Sci. 75, 4251–4268 (2018). https://doi.org/10.1007/s00018-018-2869-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2869-x

Keywords

Navigation