A latent ability to persist: differentiation in Toxoplasma gondii

  • Victoria Jeffers
  • Zoi Tampaki
  • Kami Kim
  • William J. SullivanJr.
Review

Abstract

A critical factor in the transmission and pathogenesis of Toxoplasma gondii is the ability to convert from an acute disease-causing, proliferative stage (tachyzoite), to a chronic, dormant stage (bradyzoite). The conversion of the tachyzoite-containing parasitophorous vacuole membrane into the less permeable bradyzoite cyst wall allows the parasite to persist for years within the host to maximize transmissibility to both primary (felids) and secondary (virtually all other warm-blooded vertebrates) hosts. This review presents our current understanding of the latent stage, including the factors that are important in bradyzoite induction and maintenance. Also discussed are the recent studies that have begun to unravel the mechanisms behind stage switching.

Keywords

Toxoplasma Toxoplasmosis Differentiation Encystation Tachyzoite Bradyzoite Latency Gene regulation Epigenetics Immunity 

Notes

Acknowledgements

The authors thank Dr. Michael White for his careful and critical review of our manuscript. Research in the laboratories of Drs. Sullivan and Kim is supported by Grants from the National Institutes of Health: AI116496 and AI124723 (WJS), R01AI087625 (KK), and AI092801 (to KK and WJS). This manuscript is dedicated to the memory of Dr. Zoi Tampaki who was a dedicated scientist, a valued colleague, and a beloved friend. We miss you every day.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Hutchison WM, Dunachie JF, Siim JC, Work K (1969) Life cycle of Toxoplasma gondii. BMJ 4:806PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sullivan WJ Jr, Jeffers V (2012) Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev 36:717–733PubMedCrossRefGoogle Scholar
  4. 4.
    Luft BJ, Remington JS (1988) AIDS commentary, Toxoplasmic encephalitis. J Infect Dis 157:1–6PubMedCrossRefGoogle Scholar
  5. 5.
    McLeod R, Mack D, Brown C (1991) Toxoplasma gondii—new advances in cellular and molecular biology. Exp Parasitol 72:109–121PubMedCrossRefGoogle Scholar
  6. 6.
    Wong SY, Remington JS (1993) Biology of Toxoplasma gondii. AIDS 7:299–316PubMedCrossRefGoogle Scholar
  7. 7.
    Luft BJ, Brooks RG, Conley FK, McCabe RE, Remington JS (1984) Toxoplasmic encephalitis in patients with acquired immune deficiency syndrome. J Am Med Assoc 252:913–917CrossRefGoogle Scholar
  8. 8.
    Dubey JP (1998) Advances in the life cycle of Toxoplasma gondii. Int J Parasitol 28:1019–1024PubMedCrossRefGoogle Scholar
  9. 9.
    Jones J, Lopez A, Wilson M (2003) Congenital toxoplasmosis. Am Fam Physician 67:2131–2138PubMedGoogle Scholar
  10. 10.
    Wallace GR, Stanford MR (2008) Immunity and Toxoplasma retinochoroiditis. Clin Exp Immunol 153:309–315PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Vasconcelos-Santos DV (2012) Ocular manifestations of systemic disease: toxoplasmosis. Curr Opin Ophthalmol 23:543–550PubMedCrossRefGoogle Scholar
  12. 12.
    Bowie WR, King AS, Werker DH, Isaac-Renton JL, Bell A, Eng SB, Marion SA (1997) Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma Investigation Team. Lancet 350:173–177PubMedCrossRefGoogle Scholar
  13. 13.
    Aramini JJ, Stephen C, Dubey JP, Engelstoft C, Schwantje H, Ribble CS (1999) Potential contamination of drinking water with Toxoplasma gondii oocysts. Epidemiol Infect 122:305–315PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Miller MA, Gardner IA, Kreuder C, Paradies DM, Worcester KR, Jessup DA, Dodd E, Harris MD, Ames JA, Packham AE, Conrad PA (2002) Coastal freshwater runoff is a risk factor for Toxoplasma gondii infection of southern sea otters (Enhydra lutris nereis). Int J Parasitol 32:997–1006PubMedCrossRefGoogle Scholar
  15. 15.
    Ferguson DJ, Hutchison WM (1987) The host-parasite relationship of Toxoplasma gondii in the brains of chronically infected mice. Virchows Archiv A Pathol Anat Histopathol 411:39–43CrossRefGoogle Scholar
  16. 16.
    Ferguson DJ, Hutchison WM (1987) An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitol Res 73:483–491PubMedCrossRefGoogle Scholar
  17. 17.
    Ferguson DJ, Hutchison WM, Pettersen E (1989) Tissue cyst rupture in mice chronically infected with Toxoplasma gondii. An immunocytochemical and ultrastructural study. Parasitol Res 75:599–603PubMedCrossRefGoogle Scholar
  18. 18.
    Cabral CM, Tuladhar S, Dietrich HK, Nguyen E, MacDonald WR, Trivedi T, Devineni A, Koshy AA (2016) Neurons are the primary target cell for the brain-tropic intracellular parasite Toxoplasma gondii. PLoS Pathog 12:e1005447PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Koshy AA, Dietrich HK, Christian DA, Melehani JH, Shastri AJ, Hunter CA, Boothroyd JC (2012) Toxoplasma co-opts host cells it does not invade. PLoS Pathog 8:e1002825PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kim K, Weiss LM (2004) Toxoplasma gondii: the model apicomplexan. Int J Parasitol 34:423–432PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Soete M, Dubremetz JF (1996) Toxoplasma gondii: kinetics of stage-specific protein expression during tachyzoite-bradyzoite conversion in vitro. Curr Top Microbiol Immunol 219:76–80PubMedGoogle Scholar
  22. 22.
    Dzierszinski F, Nishi M, Ouko L, Roos DS (2004) Dynamics of Toxoplasma gondii differentiation. Eukaryot Cell 3:992–1003PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lane A, Soete M, Dubremetz JF, Smith JE (1996) Toxoplasma gondii: appearance of specific markers during the development of tissue cysts in vitro. Parasitol Res 82:340–346PubMedCrossRefGoogle Scholar
  24. 24.
    Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R, Crisanti A (2008) Temporal and spatial distribution of Toxoplasma gondii differentiation into Bradyzoites and tissue cyst formation in vivo. Infect Immun 76:3491–3501PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    van der Waaij D (1959) Formation, growth and multiplication of Toxoplasma gondii cysts in mouse brain. Trop Geogr Med 11:345–360Google Scholar
  26. 26.
    Mehlhorn H, Frenkel JK (1980) Ultrastructural comparison of cysts and zoites of Toxoplasma gondii, Sarcocystis muris, and Hammondia hammondi in skeletal muscle of mice. J Parasitol 66:59–67PubMedCrossRefGoogle Scholar
  27. 27.
    Weiss LM, Kim K (2000) The development and biology of bradyzoites of Toxoplasma gondii. Front Biosci J Virtual Libr 5:D391–D405CrossRefGoogle Scholar
  28. 28.
    Tomita T, Bzik DJ, Ma YF, Fox BA, Markillie LM, Taylor RC, Kim K, Weiss LM (2013) The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence. PLoS Pathog 9:e1003823PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wang J, Dixon SE, Ting LM, Liu TK, Jeffers V, Croken MM, Calloway M, Cannella D, Hakimi MA, Kim K, Sullivan WJ Jr (2014) Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation. PLoS Pathog 10:e1003830PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Watts E, Zhao Y, Dhara A, Eller B, Patwardhan A, Sinai AP (2015) Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. mBio 6:e01155–e01215Google Scholar
  31. 31.
    Wang T, Gao JM, Yi SQ, Geng GQ, Gao XJ, Shen JL, Lu FL, Wen YZ, Hide G, Lun ZR (2014) Toxoplasma gondii infection in the peritoneal macrophages of rats treated with glucocorticoids. Parasitol Res 113:351–358PubMedCrossRefGoogle Scholar
  32. 32.
    Knoll LJ, Boothroyd JC (1998) Molecular biology’s lessons about toxoplasma development: stage-specific homologs. Parasitol Today 14:490–493PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang YW, Halonen SK, Ma YF, Wittner M, Weiss LM (2001) Initial characterization of CST1, a Toxoplasma gondii cyst wall glycoprotein. Infect Immun 69:501–507PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ferguson DJ (2004) Use of molecular and ultrastructural markers to evaluate stage conversion of Toxoplasma gondii in both the intermediate and definitive host. Int J Parasitol 34:347–360PubMedCrossRefGoogle Scholar
  35. 35.
    Torpier G, Charif H, Darcy F, Liu J, Darde ML, Capron A (1993) Toxoplasma gondii: differential location of antigens secreted from encysted bradyzoites. Exp Parasitol 77:13–22PubMedCrossRefGoogle Scholar
  36. 36.
    Lemgruber L, Lupetti P, Martins-Duarte ES, De Souza W, Vommaro RC (2011) The organization of the wall filaments and characterization of the matrix structures of Toxoplasma gondii cyst form. Cell Microbiol 13:1920–1932PubMedCrossRefGoogle Scholar
  37. 37.
    Parmley SF, Yang S, Harth G, Sibley LD, Sucharczuk A, Remington JS (1994) Molecular characterization of a 65-kilodalton Toxoplasma gondii antigen expressed abundantly in the matrix of tissue cysts. Mol Biochem Parasitol 66:283–296PubMedCrossRefGoogle Scholar
  38. 38.
    Parmley S, Slifer T, Araujo F (2002) Protective effects of immunization with a recombinant cyst antigen in mouse models of infection with Toxoplasma gondii tissue cysts. J Infect Dis 185(Suppl 1):S90–S95PubMedCrossRefGoogle Scholar
  39. 39.
    Buchholz KR, Bowyer PW, Boothroyd JC (2013) Bradyzoite pseudokinase 1 is crucial for efficient oral infectivity of the Toxoplasma gondii tissue cyst. Eukaryot Cell 12:399–410PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Buchholz KR, Fritz HM, Chen X, Durbin-Johnson B, Rocke DM, Ferguson DJ, Conrad PA, Boothroyd JC (2011) Identification of tissue cyst wall components by transcriptome analysis of in vivo and in vitro Toxoplasma gondii bradyzoites. Eukaryot Cell 10:1637–1647PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Craver MP, Rooney PJ, Knoll LJ (2010) Isolation of Toxoplasma gondii development mutants identifies a potential proteophosphogylcan that enhances cyst wall formation. Mol Biochem Parasitol 169:120–123PubMedCrossRefGoogle Scholar
  42. 42.
    Tomavo S, Fortier B, Soete M, Ansel C, Camus D, Dubremetz JF (1991) Characterization of bradyzoite-specific antigens of Toxoplasma gondii. Infect Immun 59:3750–3753PubMedPubMedCentralGoogle Scholar
  43. 43.
    Bohne W, Gross U, Ferguson DJ, Heesemann J (1995) Cloning and characterization of a bradyzoite-specifically expressed gene (hsp30/bag1) of Toxoplasma gondii, related to genes encoding small heat-shock proteins of plants. Mol Microbiol 16:1221–1230PubMedCrossRefGoogle Scholar
  44. 44.
    Bohne W, Parmley SF, Yang S, Gross U (1996) Bradyzoite-specific genes. Curr Top Microbiol Immunol 219:81–91PubMedGoogle Scholar
  45. 45.
    Parmley SF, Weiss LM, Yang S (1995) Cloning of a bradyzoite-specific gene of Toxoplasma gondii encoding a cytoplasmic antigen. Mol Biochem Parasitol 73:253–257PubMedCrossRefGoogle Scholar
  46. 46.
    Yang S, Parmley SF (1995) A bradyzoite stage-specifically expressed gene of Toxoplasma gondii encodes a polypeptide homologous to lactate dehydrogenase. Mol Biochem Parasitol 73:291–294PubMedCrossRefGoogle Scholar
  47. 47.
    Yang S, Parmley SF (1997) Toxoplasma gondii expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts. Gene 184:1–12PubMedCrossRefGoogle Scholar
  48. 48.
    Denton H, Roberts CW, Alexander J, Thong KW, Coombs GH (1996) Enzymes of energy metabolism in the bradyzoites and tachyzoites of Toxoplasma gondii. FEMS Microbiol Lett 137:103–108PubMedCrossRefGoogle Scholar
  49. 49.
    Yahiaoui B, Dzierszinski F, Bernigaud A, Slomianny C, Camus D, Tomavo S (1999) Isolation and characterization of a subtractive library enriched for developmentally regulated transcripts expressed during encystation of Toxoplasma gondii. Mol Biochem Parasitol 99:223–235PubMedCrossRefGoogle Scholar
  50. 50.
    Toursel C, Dzierszinski F, Bernigaud A, Mortuaire M, Tomavo S (2000) Molecular cloning, organellar targeting and developmental expression of mitochondrial chaperone HSP60 in Toxoplasma gondii. Mol Biochem Parasitol 111:319–332PubMedCrossRefGoogle Scholar
  51. 51.
    Holpert M, Luder CG, Gross U, Bohne W (2001) Bradyzoite-specific expression of a P-type ATPase in Toxoplasma gondii. Mol Biochem Parasitol 112:293–296PubMedCrossRefGoogle Scholar
  52. 52.
    Odberg-Ferragut C, Soete M, Engels A, Samyn B, Loyens A, Van Beeumen J, Camus D, Dubremetz JF (1996) Molecular cloning of the Toxoplasma gondii sag4 gene encoding an 18 kDa bradyzoite specific surface protein. Mol Biochem Parasitol 82:237–244PubMedCrossRefGoogle Scholar
  53. 53.
    Manger ID, Hehl A, Parmley S, Sibley LD, Marra M, Hillier L, Waterston R, Boothroyd JC (1998) Expressed sequence tag analysis of the bradyzoite stage of Toxoplasma gondii: identification of developmentally regulated genes. Infect Immun 66:1632–1637PubMedPubMedCentralGoogle Scholar
  54. 54.
    Bohne W, Wirsing A, Gross U (1997) Bradyzoite-specific gene expression in Toxoplasma gondii requires minimal genomic elements. Mol Biochem Parasitol 85:89–98PubMedCrossRefGoogle Scholar
  55. 55.
    Knoll LJ, Boothroyd JC (1998) Isolation of developmentally regulated genes from Toxoplasma gondii by a gene trap with the positive and negative selectable marker hypoxanthine–xanthine–guanine phosphoribosyltransferase. Mol Cell Biol 18:807–814PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Pittman KJ, Aliota MT, Knoll LJ (2014) Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genom 15:806CrossRefGoogle Scholar
  57. 57.
    Zhang YW, Kim K, Ma YF, Wittner M, Tanowitz HB, Weiss LM (1999) Disruption of the Toxoplasma gondii bradyzoite-specific gene BAG1 decreases in vivo cyst formation. Mol Microbiol 31:691–701PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bohne W, Hunter CA, White MW, Ferguson DJ, Gross U, Roos DS (1998) Targeted disruption of the bradyzoite-specific gene BAG1 does not prevent tissue cyst formation in Toxoplasma gondii. Mol Biochem Parasitol 92:291–301PubMedCrossRefGoogle Scholar
  59. 59.
    Holpert M, Gross U, Bohne W (2006) Disruption of the bradyzoite-specific P-type (H+)-ATPase PMA1 in Toxoplasma gondii leads to decreased bradyzoite differentiation after stress stimuli but does not interfere with mature tissue cyst formation. Mol Biochem Parasitol 146:129–133PubMedCrossRefGoogle Scholar
  60. 60.
    Kim SK, Fouts AE, Boothroyd JC (2007) Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling. J Immunol 178:5154–5165PubMedCrossRefGoogle Scholar
  61. 61.
    Fox BA, Falla A, Rommereim LM, Tomita T, Gigley JP, Mercier C, Cesbron-Delauw MF, Weiss LM, Bzik DJ (2011) Type II Toxoplasma gondii KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection. Eukaryot Cell 10:1193–1206PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Radke JB, Lucas O, De Silva EK, Ma Y, Sullivan WJ Jr, Weiss LM, Llinas M, White MW (2013) ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. Proc Natl Acad Sci USA 110:6871–6876PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Walker R, Gissot M, Croken MM, Huot L, Hot D, Kim K, Tomavo S (2013) The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Mol Microbiol 87:641–655PubMedCrossRefGoogle Scholar
  64. 64.
    Huang S, Holmes MJ, Radke JB, Hong DP, Liu TK, White MW, Sullivan WJ (2017) Toxoplasma gondii AP2IX-4 regulates gene expression during bradyzoite development. mSphere 2:e00054–e00017PubMedPubMedCentralGoogle Scholar
  65. 65.
    Hong DP, Radke JB, White MW (2017) Opposing transcriptional mechanisms regulate toxoplasma development. mSphere 2:e00347–e00416PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Radke JB, Worth D, Hong DP, Huang S, Sullivan WJ, Wilson EH, White M (2017) Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. bioRxiv.  https://doi.org/10.1101/100628 Google Scholar
  67. 67.
    Singh U, Brewer JL, Boothroyd JC (2002) Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction. Mol Microbiol 44:721–733PubMedCrossRefGoogle Scholar
  68. 68.
    Matrajt M, Donald RG, Singh U, Roos DS (2002) Identification and characterization of differentiation mutants in the protozoan parasite Toxoplasma gondii. Mol Microbiol 44:735–747PubMedCrossRefGoogle Scholar
  69. 69.
    Vanchinathan P, Brewer JL, Harb OS, Boothroyd JC, Singh U (2005) Disruption of a locus encoding a nucleolar zinc finger protein decreases tachyzoite-to-bradyzoite differentiation in Toxoplasma gondii. Infect Immun 73:6680–6688PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Anderson MZ, Brewer J, Singh U, Boothroyd JC (2009) A pseudouridine synthase homologue is critical to cellular differentiation in Toxoplasma gondii. Eukaryot Cell 8:398–409PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Frankel MB, Mordue DG, Knoll LJ (2007) Discovery of parasite virulence genes reveals a unique regulator of chromosome condensation 1 ortholog critical for efficient nuclear trafficking. Proc Natl Acad Sci USA 104:10181–10186PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Sugi T, Tu V, Ma Y, Tomita T, Weiss LM (2017) Toxoplasma gondii requires glycogen phosphorylase for balancing amylopectin storage and for efficient production of brain cysts. mBio 8:e01289–e01317PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Dzierszinski F, Mortuaire M, Dendouga N, Popescu O, Tomavo S (2001) Differential expression of two plant-like enolases with distinct enzymatic and antigenic properties during stage conversion of the protozoan parasite Toxoplasma gondii. J Mol Biol 309:1017–1027PubMedCrossRefGoogle Scholar
  74. 74.
    Al-Anouti F, Tomavo S, Parmley S, Ananvoranich S (2004) The expression of lactate dehydrogenase is important for the cell cycle of Toxoplasma gondii. J Biol Chem 279:52300–52311PubMedCrossRefGoogle Scholar
  75. 75.
    Di Cristina M, Dou Z, Lunghi M, Kannan G, Huynh MH, McGovern OL, Schultz TL, Schultz AJ, Miller AJ, Hayes BM, van der Linden W, Emiliani C, Bogyo M, Besteiro S, Coppens I, Carruthers VB (2017) Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nat Microbiol 2:17096PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Su C, Evans D, Cole RH, Kissinger JC, Ajioka JW, Sibley LD (2003) Recent expansion of Toxoplasma through enhanced oral transmission. Science 299:414–416PubMedCrossRefGoogle Scholar
  77. 77.
    Howe DK, Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172:1561–1566PubMedCrossRefGoogle Scholar
  78. 78.
    Barragan A, Sibley LD (2003) Migration of Toxoplasma gondii across biological barriers. Trends Microbiol 11:426–430PubMedCrossRefGoogle Scholar
  79. 79.
    Sabin AB (1938) Isolation of a filtrable, transmissible agent with “Neurolyti” properties from Toxoplasma-infected tissues. Science 88:189–191PubMedCrossRefGoogle Scholar
  80. 80.
    Soete M, Camus D, Dubremetz JF (1994) Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro. Exp Parasitol 78:361–370PubMedCrossRefGoogle Scholar
  81. 81.
    Bohne W, Roos DS (1997) Stage-specific expression of a selectable marker in Toxoplasma gondii permits selective inhibition of either tachyzoites or bradyzoites. Mol Biochem Parasitol 88:115–126PubMedCrossRefGoogle Scholar
  82. 82.
    Lescault PJ, Thompson AB, Patil V, Lirussi D, Burton A, Margarit J, Bond J, Matrajt M (2010) Genomic data reveal Toxoplasma gondii differentiation mutants are also impaired with respect to switching into a novel extracellular tachyzoite state. PLoS One 5:e14463PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Behnke MS, Radke JB, Smith AT, Sullivan WJ Jr, White MW (2008) The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements. Mol Microbiol 68:1502–1518PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Frenkel JK, Dubey JP, Hoff RL (1976) Loss of stages after continuous passage of Toxoplasma gondii and Besnoitia jellisoni. J Protozool 23:421–424PubMedCrossRefGoogle Scholar
  85. 85.
    Weiss LM, Ma YF, Takvorian PM, Tanowitz HB, Wittner M (1998) Bradyzoite development in Toxoplasma gondii and the hsp70 stress response. Infect Immun 66:3295–3302PubMedPubMedCentralGoogle Scholar
  86. 86.
    Fox BA, Gigley JP, Bzik DJ (2004) Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation. Int J Parasitol 34:323–331PubMedCrossRefGoogle Scholar
  87. 87.
    Narasimhan J, Joyce BR, Naguleswaran A, Smith AT, Livingston MR, Dixon SE, Coppens I, Wek RC, Sullivan WJ Jr (2008) Translation regulation by eukaryotic initiation factor-2 kinases in the development of latent cysts in Toxoplasma gondii. J Biol Chem 283:16591–16601PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Nagamune K, Hicks LM, Fux B, Brossier F, Chini EN, Sibley LD (2008) Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature 451:207–210PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bohne W, Heesemann J, Gross U (1994) Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion. Infect Immun 62:1761–1767PubMedPubMedCentralGoogle Scholar
  90. 90.
    Tomavo S, Boothroyd JC (1995) Interconnection between organellar functions, development and drug resistance in the protozoan parasite, Toxoplasma gondii. Int J Parasitol 25:1293–1299PubMedCrossRefGoogle Scholar
  91. 91.
    Bohne W, Heesemann J, Gross U (1993) Induction of bradyzoite-specific Toxoplasma gondii antigens in gamma interferon-treated mouse macrophages. Infect Immun 61:1141–1145PubMedPubMedCentralGoogle Scholar
  92. 92.
    Hartmann A, Arroyo-Olarte RD, Imkeller K, Hegemann P, Lucius R, Gupta N (2013) Optogenetic modulation of an adenylate cyclase in Toxoplasma gondii demonstrates a requirement of the parasite cAMP for host-cell invasion and stage differentiation. J Biol Chem 288:13705–13717PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sugi T, Ma YF, Tomita T, Murakoshi F, Eaton MS, Yakubu R, Han B, Tu V, Kato K, Kawazu S, Gupta N, Suvorova ES, White MW, Kim K, Weiss LM (2016) Toxoplasma gondii cyclic AMP-dependent protein kinase subunit 3 is involved in the switch from tachyzoite to bradyzoite development. mBio 7:e00755–e00816PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Luder CGK, Rahman T (2017) Impact of the host on Toxoplasma stage differentiation. Microb Cell. 4:203–211PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Radke JR, Guerini MN, Jerome M, White MW (2003) A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii. Mol Biochem Parasitol 131:119–127PubMedCrossRefGoogle Scholar
  96. 96.
    Ihara F, Nishikawa Y (2014) Starvation of low-density lipoprotein-derived cholesterol induces bradyzoite conversion in Toxoplasma gondii. Parasit Vectors 7:248PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Weilhammer DR, Iavarone AT, Villegas EN, Brooks GA, Sinai AP, Sha WC (2012) Host metabolism regulates growth and differentiation of Toxoplasma gondii. Int J Parasitol 42:947–959PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Radke JR, Donald RG, Eibs A, Jerome ME, Behnke MS, Liberator P, White MW (2006) Changes in the expression of human cell division autoantigen-1 influence Toxoplasma gondii growth and development. PLoS Pathog 2:e105PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Gurnett AM, Liberator PA, Dulski PM, Salowe SP, Donald RG, Anderson JW, Wiltsie J, Diaz CA, Harris G, Chang B, Darkin-Rattray SJ, Nare B, Crumley T, Blum PS, Misura AS, Tamas T, Sardana MK, Yuan J, Biftu T, Schmatz DM (2002) Purification and molecular characterization of cGMP-dependent protein kinase from Apicomplexan parasites. A novel chemotherapeutic target. J Biol Chem 277:15913–15922PubMedCrossRefGoogle Scholar
  100. 100.
    Donald RG, Zhong T, Wiersma H, Nare B, Yao D, Lee A, Allocco J, Liberator PA (2006) Anticoccidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-dependent protein kinase. Mol Biochem Parasitol 149:86–98PubMedCrossRefGoogle Scholar
  101. 101.
    McHugh TD, Gbewonyo A, Johnson JD, Holliman RE, Butcher PD (1993) Development of an in vitro model of Toxoplasma gondii cyst formation. FEMS Microbiol Lett 114:325–332PubMedCrossRefGoogle Scholar
  102. 102.
    da Silva Ferreira, Mda F, Barbosa HS, Gross U, Luder CG (2008) Stress-related and spontaneous stage differentiation of Toxoplasma gondii. Mol BioSyst 4:824–834CrossRefGoogle Scholar
  103. 103.
    Swierzy IJ, Handel U, Kaever A, Jarek M, Scharfe M, Schluter D, Luder CGK (2017) Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions. Sci Rep 7:7229PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Swierzy IJ, Luder CG (2015) Withdrawal of skeletal muscle cells from cell cycle progression triggers differentiation of Toxoplasma gondii towards the bradyzoite stage. Cell Microbiol 17:2–17PubMedCrossRefGoogle Scholar
  105. 105.
    Gross U, Bohne W, Soete M, Dubremetz JF (1996) Developmental differentiation between tachyzoites and bradyzoites of Toxoplasma gondii. Parasitol Today 12:30–33PubMedCrossRefGoogle Scholar
  106. 106.
    Dupont CD, Christian DA, Hunter CA (2012) Immune response and immunopathology during toxoplasmosis. Semin Immunopathol 34:793–813PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Denkers EY, Gazzinelli RT (1998) Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev 11:569–588PubMedPubMedCentralGoogle Scholar
  108. 108.
    Kang H, Remington JS, Suzuki Y (2000) Decreased resistance of B cell-deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN-gamma. TNF-alpha, and inducible nitric oxide synthase. J Immunol 164:2629–2634PubMedCrossRefGoogle Scholar
  109. 109.
    Johnson LL, Sayles PC (2002) Deficient humoral responses underlie susceptibility to Toxoplasma gondii in CD4-deficient mice. Infect Immun 70:185–191PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Denkers EY, Sher A (1997) Role of natural killer and NK1+ T-cells in regulating cell-mediated immunity during Toxoplasma gondii infection. Biochem Soc Trans 25:699–703PubMedCrossRefGoogle Scholar
  111. 111.
    Lutjen S, Soltek S, Virna S, Deckert M, Schluter D (2006) Organ- and disease-stage-specific regulation of Toxoplasma gondii-specific CD8-T-cell responses by CD4 T cells. Infect Immun 74:5790–5801PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Combe CL, Curiel TJ, Moretto MM, Khan IA (2005) NK cells help to induce CD8(+)-T-cell immunity against Toxoplasma gondii in the absence of CD4(+) T cells. Infect Immun 73:4913–4921PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Tait ED, Jordan KA, Dupont CD, Harris TH, Gregg B, Wilson EH, Pepper M, Dzierszinski F, Roos DS, Hunter CA (2010) Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol 185:1502–1512PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Yamamoto M, Ma JS, Mueller C, Kamiyama N, Saiga H, Kubo E, Kimura T, Okamoto T, Okuyama M, Kayama H, Nagamune K, Takashima S, Matsuura Y, Soldati-Favre D, Takeda K (2011) ATF6beta is a host cellular target of the Toxoplasma gondii virulence factor ROP18. J Exp Med 208:1533–1546PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Suzuki Y, Orellana MA, Schreiber RD, Remington JS (1988) Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 240:516–518PubMedCrossRefGoogle Scholar
  116. 116.
    Gazzinelli RT, Hakim FT, Hieny S, Shearer GM, Sher A (1991) Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol 146:286–292PubMedGoogle Scholar
  117. 117.
    Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T (2005) Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol 35:83–90PubMedCrossRefGoogle Scholar
  118. 118.
    Kang H, Suzuki Y (2001) Requirement of non-T cells that produce gamma interferon for prevention of reactivation of Toxoplasma gondii infection in the brain. Infect Immun 69:2920–2927PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wang X, Suzuki Y (2007) Microglia produce IFN-gamma independently from T cells during acute toxoplasmosis in the brain. J Interf Cytokine Res 27:599–605CrossRefGoogle Scholar
  120. 120.
    Scharton-Kersten TM, Wynn TA, Denkers EY, Bala S, Grunvald E, Hieny S, Gazzinelli RT, Sher A (1996) In the absence of endogenous IFN-gamma, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. J Immunol 157:4045–4054PubMedGoogle Scholar
  121. 121.
    Gazzinelli RT, Wysocka M, Hayashi S, Denkers EY, Hieny S, Caspar P, Trinchieri G, Sher A (1994) Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 153:2533–2543PubMedGoogle Scholar
  122. 122.
    Langermans JA, van der Hulst ME, Nibbering PH, van Furth R (1992) Endogenous tumor necrosis factor alpha is required for enhanced antimicrobial activity against Toxoplasma gondii and Listeria monocytogenes in recombinant gamma interferon-treated mice. Infect Immun 60:5107–5112PubMedPubMedCentralGoogle Scholar
  123. 123.
    Chao CC, Anderson WR, Hu S, Gekker G, Martella A, Peterson PK (1993) Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism. Clin Immunol Immunopathol 67:178–183PubMedCrossRefGoogle Scholar
  124. 124.
    Peterson PK, Gekker G, Hu S, Chao CC (1995) Human astrocytes inhibit intracellular multiplication of Toxoplasma gondii by a nitric oxide-mediated mechanism. J Infect Dis 171:516–518PubMedCrossRefGoogle Scholar
  125. 125.
    Adams LB, Hibbs JB Jr, Taintor RR, Krahenbuhl JL (1990) Microbiostatic effect of murine-activated macrophages for Toxoplasma gondii. Role for synthesis of inorganic nitrogen oxides from l-arginine. J Immunol 144:2725–2729PubMedGoogle Scholar
  126. 126.
    Luder CG, Algner M, Lang C, Bleicher N, Gross U (2003) Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages. Int J Parasitol 33:833–844PubMedCrossRefGoogle Scholar
  127. 127.
    Ibrahim HM, Bannai H, Xuan X, Nishikawa Y (2009) Toxoplasma gondii cyclophilin 18-mediated production of nitric oxide induces Bradyzoite conversion in a CCR5-dependent manner. Infect Immun 77:3686–3695PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hayashi S, Chan CC, Gazzinelli R, Roberge FG (1996) Contribution of nitric oxide to the host parasite equilibrium in toxoplasmosis. J Immunol 156:1476–1481PubMedGoogle Scholar
  129. 129.
    Daubener W, Spors B, Hucke C, Adam R, Stins M, Kim KS, Schroten H (2001) Restriction of Toxoplasma gondii growth in human brain microvascular endothelial cells by activation of indoleamine 2,3-dioxygenase. Infect Immun 69:6527–6531PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gupta SL, Carlin JM, Pyati P, Dai W, Pfefferkorn ER, Murphy MJ Jr (1994) Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts. Infect Immun 62:2277–2284PubMedPubMedCentralGoogle Scholar
  131. 131.
    Daubener W, Gutsche M, Nockemann S, MacKenzie C, Seghrouchni S, Hadding U (1996) Protamine enhances the activity of human recombinant interferon-gamma. J Interf Cytokine Res 16:531–536CrossRefGoogle Scholar
  132. 132.
    Pfefferkorn ER (1984) Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci USA 81:908–912PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Murray HW, Szuro-Sudol A, Wellner D, Oca MJ, Granger AM, Libby DM, Rothermel CD, Rubin BY (1989) Role of tryptophan degradation in respiratory burst-independent antimicrobial activity of gamma interferon-stimulated human macrophages. Infect Immun 57:845–849PubMedPubMedCentralGoogle Scholar
  134. 134.
    Divanovic S, Sawtell NM, Trompette A, Warning JI, Dias A, Cooper AM, Yap GS, Arditi M, Shimada K, Duhadaway JB, Prendergast GC, Basaraba RJ, Mellor AL, Munn DH, Aliberti J, Karp CL (2012) Opposing biological functions of tryptophan catabolizing enzymes during intracellular infection. J Infect Dis 205:152–161PubMedCrossRefGoogle Scholar
  135. 135.
    Sibley LD, Messina M, Niesman IR (1994) Stable DNA transformation in the obligate intracellular parasite Toxoplasma gondii by complementation of tryptophan auxotrophy. Proc Natl Acad Sci USA 91:5508–5512PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Schmitz JL, Carlin JM, Borden EC, Byrne GI (1989) Beta interferon inhibits Toxoplasma gondii growth in human monocyte-derived macrophages. Infect Immun 57:3254–3256PubMedPubMedCentralGoogle Scholar
  137. 137.
    Knubel CP, Martinez FF, Fretes RE, Diaz Lujan C, Theumer MG, Cervi L, Motran CC (2010) Indoleamine 2,3-dioxigenase (IDO) is critical for host resistance against Trypanosoma cruzi. FASEB J 24:2689–2701PubMedCrossRefGoogle Scholar
  138. 138.
    Tetsutani K, To H, Torii M, Hisaeda H, Himeno K (2007) Malaria parasite induces tryptophan-related immune suppression in mice. Parasitology 134:923–930PubMedCrossRefGoogle Scholar
  139. 139.
    Yap GS, Scharton-Kersten T, Charest H, Sher A (1998) Decreased resistance of TNF receptor p55- and p75-deficient mice to chronic toxoplasmosis despite normal activation of inducible nitric oxide synthase in vivo. J Immunol 160:1340–1345PubMedGoogle Scholar
  140. 140.
    Schluter D, Kwok LY, Lutjen S, Soltek S, Hoffmann S, Korner H, Deckert M (2003) Both lymphotoxin-alpha and TNF are crucial for control of Toxoplasma gondii in the central nervous system. J Immunol 170:6172–6182PubMedCrossRefGoogle Scholar
  141. 141.
    Weiss LM, Laplace D, Takvorian PM, Tanowitz HB, Cali A, Wittner M (1995) A cell culture system for study of the development of Toxoplasma gondii bradyzoites. J Eukaryot Microbiol 42:150–157PubMedCrossRefGoogle Scholar
  142. 142.
    Yap GS, Sher A (1999) Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (IFN)-gamma- and tumor necrosis factor (TNF)-alpha-dependent host resistance to the intracellular pathogen, Toxoplasma gondii. J Exp Med 189:1083–1092PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A (1993) Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci USA 90:6115–6119PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Streilein JW (1995) Ocular immune privilege in the immunosuppressive intraocular microenvironment. Ocular Immunol Inflamm 3:139–144CrossRefGoogle Scholar
  145. 145.
    Wiendl H, Hohlfeld R, Kieseier BC (2005) Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol 26:373–380PubMedCrossRefGoogle Scholar
  146. 146.
    Jones LA, Alexander J, Roberts CW (2006) Ocular toxoplasmosis: in the storm of the eye. Parasite Immunol 28:635–642PubMedCrossRefGoogle Scholar
  147. 147.
    Mahamed DA, Mills JH, Egan CE, Denkers EY, Bynoe MS (2012) CD73-generated adenosine facilitates Toxoplasma gondii differentiation to long-lived tissue cysts in the central nervous system. Proc Natl Acad Sci USA 109:16312–16317PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Israelski DM, Remington JS (1988) Toxoplasmic encephalitis in patients with AIDS. Infect Dis Clin N Am 2:429–445Google Scholar
  149. 149.
    Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A (1992) Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 149:175–180PubMedGoogle Scholar
  150. 150.
    Suzuki Y, Remington JS (1989) A method for obtaining large numbers of trophozoites of avirulent strains of Toxoplasma gondii using an antibody to interferon-gamma. J Parasitol 75:174–176PubMedCrossRefGoogle Scholar
  151. 151.
    Suzuki Y, Joh K (1994) Effect of the strain of Toxoplasma gondii on the development of toxoplasmic encephalitis in mice treated with antibody to interferon-gamma. Parasitol Res 80:125–130PubMedCrossRefGoogle Scholar
  152. 152.
    Dunay IR, Chan WC, Haynes RK, Sibley LD (2009) Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model. Antimicrob Agents Chemother 53:4450–4456PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Jones TC, Bienz KA, Erb P (1986) In vitro cultivation of Toxoplasma gondii cysts in astrocytes in the presence of gamma interferon. Infect Immun 51:147–156PubMedPubMedCentralGoogle Scholar
  154. 154.
    Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11PubMedCrossRefGoogle Scholar
  155. 155.
    Holmes MJ, Augusto LDS, Zhang M, Wek RC, Sullivan WJ Jr (2017) Translational control in the latency of apicomplexan parasites. Trends Parasitol 33:947–960PubMedCrossRefGoogle Scholar
  156. 156.
    Sullivan WJ Jr, Narasimhan J, Bhatti MM, Wek RC (2004) Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control. Biochem J 380:523–531PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939PubMedCrossRefGoogle Scholar
  158. 158.
    Tsaytler P, Harding HP, Ron D, Bertolotti A (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332:91–94PubMedCrossRefGoogle Scholar
  159. 159.
    Konrad C, Queener SF, Wek RC, Sullivan WJ, Jr. (2013) Inhibitors of eIF2alpha dephosphorylation slow replication and stabilize latency in Toxoplasma gondii. Antimicrob Agents ChemotherGoogle Scholar
  160. 160.
    Joyce BR, Tampaki Z, Kim K, Wek RC, Sullivan WJ Jr (2013) The unfolded protein response in the protozoan parasite Toxoplasma gondii features translational and transcriptional control. Eukaryot Cell 12:979–989PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Painter HJ, Campbell TL, Llinas M (2011) The apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol Biochem Parasitol 176:1–7PubMedCrossRefGoogle Scholar
  162. 162.
    Cleary MD, Singh U, Blader IJ, Brewer JL, Boothroyd JC (2002) Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryot Cell 1:329–340PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, White MW (2005) The transcriptome of Toxoplasma gondii. BMC Biol 3:26PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Sullivan WJ Jr, Hakimi MA (2006) Histone mediated gene activation in Toxoplasma gondii. Mol Biochem Parasitol 148:109–116PubMedCrossRefGoogle Scholar
  165. 165.
    Meissner M, Soldati D (2005) The transcription machinery and the molecular toolbox to control gene expression in Toxoplasma gondii and other protozoan parasites. Microb Infect Inst Pasteur 7:1376–1384CrossRefGoogle Scholar
  166. 166.
    Olguin-Lamas A, Madec E, Hovasse A, Werkmeister E, Callebaut I, Slomianny C, Delhaye S, Mouveaux T, Schaeffer-Reiss C, Van Dorsselaer A, Tomavo S (2011) A novel Toxoplasma gondii nuclear factor TgNF3 is a dynamic chromatin-associated component, modulator of nucleolar architecture and parasite virulence. PLoS Pathog 7:e1001328PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    White MW, Radke JR, Radke JB (2014) Toxoplasma development—turn the switch on or off? Cell Microbiol 16:466–472PubMedCrossRefGoogle Scholar
  168. 168.
    Behnke MS, Wootton JC, Lehmann MM, Radke JB, Lucas O, Nawas J, Sibley LD, White MW (2010) Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS One 5:e12354PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Radke JR, Striepen B, Guerini MN, Jerome ME, Roos DS, White MW (2001) Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii. Mol Biochem Parasitol 115:165–175PubMedCrossRefGoogle Scholar
  170. 170.
    Croken MM, Ma Y, Markillie LM, Taylor RC, Orr G, Weiss LM, Kim K (2014) Distinct strains of Toxoplasma gondii feature divergent transcriptomes regardless of developmental stage. PLoS One 9:e111297PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Croken MM, Qiu W, White MW, Kim K (2014) Gene set enrichment analysis (GSEA) of Toxoplasma gondii expression datasets links cell cycle progression and the bradyzoite developmental program. BMC Genom 15:515CrossRefGoogle Scholar
  172. 172.
    Saksouk N, Bhatti MM, Kieffer S, Smith AT, Musset K, Garin J, Sullivan WJ Jr, Cesbron-Delauw MF, Hakimi MA (2005) Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol Cell Biol 25:10301–10314PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Naguleswaran A, Elias EV, McClintick J, Edenberg HJ, Sullivan WJ Jr (2010) Toxoplasma gondii lysine acetyltransferase GCN5-A functions in the cellular response to alkaline stress and expression of cyst genes. PLoS Pathog 6:e1001232PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Bougdour A, Maubon D, Baldacci P, Ortet P, Bastien O, Bouillon A, Barale JC, Pelloux H, Menard R, Hakimi MA (2009) Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. J Exp Med 206:953–966PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Sautel CF, Cannella D, Bastien O, Kieffer S, Aldebert D, Garin J, Tardieux I, Belrhali H, Hakimi MA (2007) SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol Cell Biol 27:5711–5724PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Dixon SE, Stilger KL, Elias EV, Naguleswaran A, Sullivan WJ Jr (2010) A decade of epigenetic research in Toxoplasma gondii. Mol Biochem Parasitol 173:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Bougdour A, Braun L, Cannella D, Hakimi MA (2010) Chromatin modifications: implications in the regulation of gene expression in Toxoplasma gondii. Cell Microbiol 12:413–423PubMedCrossRefGoogle Scholar
  178. 178.
    Gissot M, Kelly KA, Ajioka JW, Greally JM, Kim K (2007) Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii. PLoS Pathog 3:e77PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Sullivan WJ Jr, Smith AT, Joyce BR (2009) Understanding mechanisms and the role of differentiation in pathogenesis of Toxoplasma gondii: a review. Mem Inst Oswaldo Cruz 104:155–161PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Bhatti MM, Livingston M, Mullapudi N, Sullivan WJ Jr (2006) Pair of unusual GCN5 histone acetyltransferases and ADA2 homologues in the protozoan parasite Toxoplasma gondii. Eukaryot Cell 5:62–76PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Boyle JP, Rajasekar B, Saeij JP, Ajioka JW, Berriman M, Paulsen I, Roos DS, Sibley LD, White MW, Boothroyd JC (2006) Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii. Proc Natl Acad Sci USA 103:10514–10519PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Jeffers V, Sullivan WJ Jr (2012) Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii. Eukaryot Cell 11:735–742PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Xue B, Jeffers V, Sullivan WJ, Uversky VN (2013) Protein intrinsic disorder in the acetylome of intracellular and extracellular Toxoplasma gondii. Mol BioSyst 9:645–657PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Sullivan WJ Jr, Monroy MA, Bohne W, Nallani KC, Chrivia J, Yaciuk P, Smith CK 2nd, Queener SF (2003) Molecular cloning and characterization of an SRCAP chromatin remodeling homologue in Toxoplasma gondii. Parasitol Res 90:1–8PubMedGoogle Scholar
  185. 185.
    Rooney PJ, Neal LM, Knoll LJ (2011) Involvement of a Toxoplasma gondii chromatin remodeling complex ortholog in developmental regulation. PLoS One 6:e19570PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Dalmasso MC, Onyango DO, Naguleswaran A, Sullivan WJ Jr, Angel SO (2009) Toxoplasma H2A variants reveal novel insights into nucleosome composition and functions for this histone family. J Mol Biol 392:33–47PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Nardelli SC, Che FY, Silmon de Monerri NC, Xiao H, Nieves E, Madrid-Aliste C, Angel SO, Sullivan WJ, Jr., Angeletti RH, Kim K, Weiss LM (2013) The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications. mBio 4:e00922–e01013Google Scholar
  188. 188.
    Lekutis C, Ferguson DJ, Grigg ME, Camps M, Boothroyd JC (2001) Surface antigens of Toxoplasma gondii: variations on a theme. Int J Parasitol 31:1285–1292PubMedCrossRefGoogle Scholar
  189. 189.
    Lekutis C, Ferguson DJ, Boothroyd JC (2000) Toxoplasma gondii: identification of a developmentally regulated family of genes related to SAG2. Exp Parasitol 96:89–96PubMedCrossRefGoogle Scholar
  190. 190.
    Saeij JP, Arrizabalaga G, Boothroyd JC (2008) A cluster of four surface antigen genes specifically expressed in bradyzoites, SAG2CDXY, plays an important role in Toxoplasma gondii persistence. Infect Immun 76:2402–2410PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Schwarz JA, Fouts AE, Cummings CA, Ferguson DJ, Boothroyd JC (2005) A novel rhoptry protein in Toxoplasma gondii bradyzoites and merozoites. Mol Biochem Parasitol 144:159–166PubMedCrossRefGoogle Scholar
  192. 192.
    Lecordier L, Moleon-Borodowsky I, Dubremetz JF, Tourvieille B, Mercier C, Deslee D, Capron A, Cesbron-Delauw MF (1995) Characterization of a dense granule antigen of Toxoplasma gondii (GRA6) associated to the network of the parasitophorous vacuole. Mol Biochem Parasitol 70:85–94PubMedCrossRefGoogle Scholar
  193. 193.
    Patil V, Lescault PJ, Lirussi D, Thompson AB, Matrajt M (2012) Disruption of the expression of a non-coding RNA significantly impairs cellular differentiation in Toxoplasma gondii. Int J Mol Sci 14:611–624PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Milligan-Myhre KC, Rooney PJ, Knoll LJ (2011) Examination of a virulence mutant uncovers the ribosome biogenesis regulatory protein of Toxoplasma gondii. J Parasitol 97:1173–1177PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Joyce BR, Queener SF, Wek RC, Sullivan WJ Jr (2010) Phosphorylation of eukaryotic initiation factor-2{alpha} promotes the extracellular survival of obligate intracellular parasite Toxoplasma gondii. Proc Natl Acad Sci USA 107:17200–17205PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Departments of Medicine, Microbiology and Immunology, and PathologyAlbert Einstein College of MedicineBronxUSA
  3. 3.Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaUSA
  4. 4.Department of Microbiology and ImmunologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations