Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 13, pp 2303–2319 | Cite as

Regulation of the Hippo pathway in cancer biology

  • Sungho Moon
  • So Yeon Park
  • Hyun Woo Park
Review

Abstract

The Hippo tumor suppressor pathway, which is well conserved from Drosophila to humans, has emerged as the master regulator of organ size, as well as major cellular properties, such as cell proliferation, survival, stemness, and tissue homeostasis. The biological significance and deregulation of the Hippo pathway in tumorigenesis have received a surge of interest in the past decade. In the current review, we present the major discoveries that made substantial contributions to our understanding of the Hippo pathway and discuss how Hippo pathway components contribute to cellular signaling, physiology, and their potential implications in anticancer therapeutics.

Keywords

Hippo pathway YAP/TAZ TEAD Cancer Therapeutic target 

Notes

Acknowledgements

We apologize to those colleagues, whose work has not been cited because of space limitations. This work was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (Grant Number: HI17C1560), and the National Research Foundation of Korea (NRF) Grant funded by the Korea government (2017R1A4A1015328 and 2018R1C1B6004301), and funded by the Yonsei University Future-leading Research Initiative of 2017 (2017-22-0071) to H.W.P. In addition, S.H.M and S.Y.P were supported by the Brain Korea (BK21) PLUS Program.

References

  1. 1.
    Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13(3):172–183.  https://doi.org/10.1038/nrc3461 PubMedCrossRefGoogle Scholar
  2. 2.
    St Johnston D (2002) The art and design of genetic screens: drosophila melanogaster. Nat Rev Genet 3(3):176–188.  https://doi.org/10.1038/nrg751 PubMedCrossRefGoogle Scholar
  3. 3.
    Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9(5):534–546PubMedCrossRefGoogle Scholar
  4. 4.
    Xu T, Wang W, Zhang S, Stewart RA, Yu W (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121(4):1053–1063PubMedGoogle Scholar
  5. 5.
    Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D, Hariharan IK (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110(4):467–478PubMedCrossRefGoogle Scholar
  6. 6.
    Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ, Halder G (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129(24):5719–5730PubMedCrossRefGoogle Scholar
  7. 7.
    Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114(4):457–467PubMedCrossRefGoogle Scholar
  8. 8.
    Jia J, Zhang W, Wang B, Trinko R, Jiang J (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17(20):2514–2519.  https://doi.org/10.1101/gad.1134003 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pantalacci S, Tapon N, Leopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5(10):921–927.  https://doi.org/10.1038/ncb1051 PubMedCrossRefGoogle Scholar
  10. 10.
    Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5(10):914–920.  https://doi.org/10.1038/ncb1050 PubMedCrossRefGoogle Scholar
  11. 11.
    Wu S, Huang J, Dong J, Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114(4):445–456PubMedCrossRefGoogle Scholar
  12. 12.
    Richardson HE, O’Keefe LV, Reed SI, Saint R (1993) A Drosophila G1-specific cyclin E homolog exhibits different modes of expression during embryogenesis. Development 119(3):673–690PubMedGoogle Scholar
  13. 13.
    Richardson H, O’Keefe LV, Marty T, Saint R (1995) Ectopic cyclin E expression induces premature entry into S phase and disrupts pattern formation in the Drosophila eye imaginal disc. Development 121(10):3371–3379PubMedGoogle Scholar
  14. 14.
    Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehner CF (1994) Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77(1):107–120PubMedCrossRefGoogle Scholar
  15. 15.
    Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98(4):453–463PubMedCrossRefGoogle Scholar
  16. 16.
    Ryoo HD, Steller H (2003) Hippo and its mission for growth control. Nat Cell Biol 5(10):853–855.  https://doi.org/10.1038/ncb1003-853 PubMedCrossRefGoogle Scholar
  17. 17.
    Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120(5):675–685.  https://doi.org/10.1016/j.cell.2004.12.036 PubMedCrossRefGoogle Scholar
  18. 18.
    Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122(3):421–434.  https://doi.org/10.1016/j.cell.2005.06.007 PubMedCrossRefGoogle Scholar
  19. 19.
    Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133.  https://doi.org/10.1016/j.cell.2007.07.019 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9(8):2145–2152PubMedGoogle Scholar
  21. 21.
    Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22(14):1962–1971.  https://doi.org/10.1101/gad.1664408 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14(3):377–387.  https://doi.org/10.1016/j.devcel.2008.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wu S, Liu Y, Zheng Y, Dong J, Pan D (2008) The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14(3):388–398.  https://doi.org/10.1016/j.devcel.2008.01.007 PubMedCrossRefGoogle Scholar
  24. 24.
    Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18(6):435–441.  https://doi.org/10.1016/j.cub.2008.02.034 PubMedCrossRefGoogle Scholar
  25. 25.
    Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126(4):767–774.  https://doi.org/10.1016/j.cell.2006.07.013 PubMedCrossRefGoogle Scholar
  26. 26.
    Nolo R, Morrison CM, Tao C, Zhang X, Halder G (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16(19):1895–1904.  https://doi.org/10.1016/j.cub.2006.08.057 PubMedCrossRefGoogle Scholar
  27. 27.
    Herranz H, Hong X, Cohen SM (2012) Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol 22(8):651–657.  https://doi.org/10.1016/j.cub.2012.02.050 PubMedCrossRefGoogle Scholar
  28. 28.
    Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell 19(4):507–520.  https://doi.org/10.1016/j.devcel.2010.09.009 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ziosi M, Baena-Lopez LA, Grifoni D, Froldi F, Pession A, Garoia F, Trotta V, Bellosta P, Cavicchi S, Pession A (2010) dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genet 6(9):e1001140.  https://doi.org/10.1371/journal.pgen.1001140 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Peng HW, Slattery M, Mann RS (2009) Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev 23(19):2307–2319.  https://doi.org/10.1101/gad.1820009 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ota M, Sasaki H (2008) Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135(24):4059–4069.  https://doi.org/10.1242/dev.027151 PubMedCrossRefGoogle Scholar
  32. 32.
    Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410.  https://doi.org/10.1016/j.devcel.2009.02.003 PubMedCrossRefGoogle Scholar
  33. 33.
    Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15(10):1229–1241.  https://doi.org/10.1101/gad.888601 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F, Han X, Feng Y, Zheng C, Wang Z, Li F, Chen H, Zhou Z, Zhang L, Ji H (2014) VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP–TEAD transcriptional complex. Cell Res 24(3):331–343.  https://doi.org/10.1038/cr.2014.10 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, He F, Wang Y, Zhang Z, Wang W, Wang X, Guo T, Li P, Zhao Y, Ji H, Zhang L, Zhou Z (2014) A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25(2):166–180.  https://doi.org/10.1016/j.ccr.2014.01.010 PubMedCrossRefGoogle Scholar
  36. 36.
    Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J, Huang B, Chen Q, Wu S, Pan D (2013) The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell 25(4):388–401.  https://doi.org/10.1016/j.devcel.2013.04.021 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Guo T, Lu Y, Li P, Yin MX, Lv D, Zhang W, Wang H, Zhou Z, Ji H, Zhao Y, Zhang L (2013) A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 23(10):1201–1214.  https://doi.org/10.1038/cr.2013.120 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Moroishi T, Hansen CG, Guan KL (2015) The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 15(2):73–79.  https://doi.org/10.1038/nrc3876 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738.  https://doi.org/10.1158/0008-5472.CAN-10-2711 PubMedCrossRefGoogle Scholar
  40. 40.
    Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, Wang CY, Guan KL (2015) Alternative Wnt Signaling Activates YAP/TAZ. Cell 162(4):780–794.  https://doi.org/10.1016/j.cell.2015.07.013 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Seo E, Kim WY, Hur J, Kim H, Nam SA, Choi A, Kim YM, Park SH, Chung C, Kim J, Min S, Myung SJ, Lim DS, Kim YK (2016) The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis. Sci Rep 6:31931.  https://doi.org/10.1038/srep31931 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Tschaharganeh DF, Chen X, Latzko P, Malz M, Gaida MM, Felix K, Ladu S, Singer S, Pinna F, Gretz N, Sticht C, Tomasi ML, Delogu S, Evert M, Fan B, Ribback S, Jiang LJ, Brozzetti S, Bergmann F, Dombrowski F, Schirmacher P, Calvisi DF, Breuhahn K (2013) Yes-associated protein up-regulates jagged-1 and activates the NOTCH pathway in human hepatocellular carcinoma. Gastroenterology 144(7):1530-U1368.  https://doi.org/10.1053/j.gastro.2013.02.009 CrossRefGoogle Scholar
  43. 43.
    Kim T, Yang SJ, Hwang D, Song J, Kim M, Kyum Kim S, Kang K, Ahn J, Lee D, Kim MY, Kim S, Seung Koo J, Seok Koh S, Kim SY, Lim DS (2015) A basal-like breast cancer-specific role for SRF-IL6 in YAP-induced cancer stemness. Nat Commun 6:10186.  https://doi.org/10.1038/ncomms10186 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R, Brugge JS, Dyson NJ, Haber DA (2009) YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11(12):1444–1450.  https://doi.org/10.1038/ncb1993 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kwon Y, Vinayagam A, Sun X, Dephoure N, Gygi SP, Hong P, Perrimon N (2013) The Hippo signaling pathway interactome. Science 342(6159):737–740.  https://doi.org/10.1126/science.1243971 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24(1):72–85.  https://doi.org/10.1101/gad.1843810 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28(7):2426–2436.  https://doi.org/10.1128/MCB.01874-07 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, Zhao S, Xiong Y, Lei QY, Guan KL (2010) The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285(48):37159–37169.  https://doi.org/10.1074/jbc.M110.152942 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19(24):6778–6791.  https://doi.org/10.1093/emboj/19.24.6778 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30(1):1–17.  https://doi.org/10.1101/gad.274027.115 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    He M, Zhou Z, Shah AA, Hong Y, Chen Q, Wan Y (2016) New insights into posttranslational modifications of Hippo pathway in carcinogenesis and therapeutics. Cell Div 11:4.  https://doi.org/10.1186/s13008-016-0013-6 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Boggiano JC, Vanderzalm PJ, Fehon RG (2011) Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 21(5):888–895.  https://doi.org/10.1016/j.devcel.2011.08.028 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Poon CL, Lin JI, Zhang X, Harvey KF (2011) The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador–Warts–Hippo pathway. Dev Cell 21(5):896–906.  https://doi.org/10.1016/j.devcel.2011.09.012 PubMedCrossRefGoogle Scholar
  54. 54.
    Plouffe SW, Meng Z, Lin KC, Lin B, Hong AW, Chun JV, Guan KL (2016) Characterization of Hippo pathway components by gene inactivation. Mol Cell 64(5):993–1008.  https://doi.org/10.1016/j.molcel.2016.10.034 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Li Q, Li S, Mana-Capelli S, Roth Flach RJ, Danai LV, Amcheslavsky A, Nie Y, Kaneko S, Yao X, Chen X, Cotton JL, Mao J, McCollum D, Jiang J, Czech MP, Xu L, Ip YT (2014) The conserved misshapen-warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell 31(3):291–304.  https://doi.org/10.1016/j.devcel.2014.09.012 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL, Wei C, Frazier M, Samson O, Wong KK, Kim C, Camargo FD (2014) A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol 16(1):108–117.  https://doi.org/10.1038/ncb2884 PubMedCrossRefGoogle Scholar
  57. 57.
    Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D (2015) Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev Cell 34(6):642–655.  https://doi.org/10.1016/j.devcel.2015.08.014 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, Park HW, Mo JS, Lu W, Lu S, Flores F, Yu FX, Halder G, Guan KL (2015) MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun 6:8357.  https://doi.org/10.1038/ncomms9357 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15(4):225–242.  https://doi.org/10.1038/nrm3775 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zecca M, Struhl G (2010) A feed-forward circuit linking wingless, fat-dachsous signaling, and the warts-hippo pathway to Drosophila wing growth. PLoS Biol 8(6):e1000386.  https://doi.org/10.1371/journal.pbio.1000386 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Vrabioiu AM, Struhl G (2015) Fat/Dachsous signaling promotes drosophila wing growth by regulating the conformational state of the NDR kinase warts. Dev Cell 35(6):737–749.  https://doi.org/10.1016/j.devcel.2015.11.027 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Renfranz PJ, Siegrist SE, Stronach BE, Macalma T, Beckerle MC (2003) Molecular and phylogenetic characterization of Zyx102, a Drosophila orthologue of the zyxin family that interacts with Drosophila Enabled. Gene 305(1):13–26PubMedCrossRefGoogle Scholar
  63. 63.
    Rauskolb C, Pan G, Reddy BV, Oh H, Irvine KD (2011) Zyxin links fat signaling to the hippo pathway. PLoS Biol 9(6):e1000624.  https://doi.org/10.1371/journal.pbio.1000624 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C, Halder G (2010) The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci USA 107(36):15810–15815.  https://doi.org/10.1073/pnas.1004060107 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE (2010) Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 20(7):573–581.  https://doi.org/10.1016/j.cub.2010.01.055 PubMedCrossRefGoogle Scholar
  66. 66.
    Ling C, Zheng Y, Yin F, Yu J, Huang J, Hong Y, Wu S, Pan D (2010) The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci USA 107(23):10532–10537.  https://doi.org/10.1073/pnas.1004279107 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Robinson BS, Huang J, Hong Y, Moberg KH (2010) Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 20(7):582–590.  https://doi.org/10.1016/j.cub.2010.03.019 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    McCartney BM, Kulikauskas RM, LaJeunesse DR, Fehon RG (2000) The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 127(6):1315–1324PubMedGoogle Scholar
  69. 69.
    Badouel C, Gardano L, Amin N, Garg A, Rosenfeld R, Le Bihan T, McNeill H (2009) The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 16(3):411–420.  https://doi.org/10.1016/j.devcel.2009.01.010 PubMedCrossRefGoogle Scholar
  70. 70.
    Ribeiro P, Holder M, Frith D, Snijders AP, Tapon N (2014) Crumbs promotes expanded recognition and degradation by the SCF(Slimb/beta-TrCP) ubiquitin ligase. Proc Natl Acad Sci USA 111(19):E1980–1989.  https://doi.org/10.1073/pnas.1315508111 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H (2010) The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 18(2):309–316.  https://doi.org/10.1016/j.devcel.2009.12.013 PubMedCrossRefGoogle Scholar
  72. 72.
    Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N (2010) Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18(2):300–308.  https://doi.org/10.1016/j.devcel.2009.12.011 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18(2):288–299.  https://doi.org/10.1016/j.devcel.2009.12.012 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zhou PJ, Xue W, Peng J, Wang Y, Wei L, Yang Z, Zhu HH, Fang YX, Gao WQ (2017) Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway. J Exp Clin Cancer Res 36(1):139.  https://doi.org/10.1186/s13046-017-0609-y PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG, Holmgren L (2002) Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene 298(1):69–77PubMedCrossRefGoogle Scholar
  76. 76.
    Sugihara-Mizuno Y, Adachi M, Kobayashi Y, Hamazaki Y, Nishimura M, Imai T, Furuse M, Tsukita S (2007) Molecular characterization of angiomotin/JEAP family proteins: interaction with MUPP1/Patj and their endogenous properties. Genes Cells 12(4):473–486.  https://doi.org/10.1111/j.1365-2443.2007.01066.x PubMedCrossRefGoogle Scholar
  77. 77.
    Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, Colwill K, Starostine A, Metalnikov P, Pawson T (2006) A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 125(3):535–548.  https://doi.org/10.1016/j.cell.2006.02.045 PubMedCrossRefGoogle Scholar
  78. 78.
    Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, Guan KL (2011) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25(1):51–63.  https://doi.org/10.1101/gad.2000111 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W (2011) Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 286(9):7018–7026.  https://doi.org/10.1074/jbc.C110.212621 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wang W, Huang J, Chen J (2011) Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem 286(6):4364–4370.  https://doi.org/10.1074/jbc.C110.205401 PubMedCrossRefGoogle Scholar
  81. 81.
    Paramasivam M, Sarkeshik A, Yates JR 3rd, Fernandes MJ, McCollum D (2011) Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell 22(19):3725–3733.  https://doi.org/10.1091/mbc.E11-04-0300 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S (2011) The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147(4):759–772.  https://doi.org/10.1016/j.cell.2011.09.048 PubMedCrossRefGoogle Scholar
  83. 83.
    Oka T, Remue E, Meerschaert K, Vanloo B, Boucherie C, Gfeller D, Bader GD, Sidhu SS, Vandekerckhove J, Gettemans J, Sudol M (2010) Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J 432(3):461–472.  https://doi.org/10.1042/BJ20100870 PubMedCrossRefGoogle Scholar
  84. 84.
    Remue E, Meerschaert K, Oka T, Boucherie C, Vandekerckhove J, Sudol M, Gettemans J (2010) TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Lett 584(19):4175–4180.  https://doi.org/10.1016/j.febslet.2010.09.020 PubMedCrossRefGoogle Scholar
  85. 85.
    Kobielak A, Fuchs E (2004) Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 5(8):614–625.  https://doi.org/10.1038/nrm1433 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD (2011) Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144(5):782–795.  https://doi.org/10.1016/j.cell.2011.02.031 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD, Lantz DM, Seykora JT, Vasioukhin V (2011) Alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4(174):ra33.  https://doi.org/10.1126/scisignal.2001823 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kim NG, Koh E, Chen X, Gumbiner BM (2011) E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 108(29):11930–11935.  https://doi.org/10.1073/pnas.1103345108 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Huang JM, Nagatomo I, Suzuki E, Mizuno T, Kumagai T, Berezov A, Zhang H, Karlan B, Greene MI, Wang Q (2013) YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 32(17):2220–2229.  https://doi.org/10.1038/onc.2012.231 PubMedCrossRefGoogle Scholar
  90. 90.
    Liu X, Yang N, Figel SA, Wilson KE, Morrison CD, Gelman IH, Zhang J (2013) PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32(10):1266–1273.  https://doi.org/10.1038/onc.2012.147 PubMedCrossRefGoogle Scholar
  91. 91.
    Michaloglou C, Lehmann W, Martin T, Delaunay C, Hueber A, Barys L, Niu H, Billy E, Wartmann M, Ito M, Wilson CJ, Digan ME, Bauer A, Voshol H, Christofori G, Sellers WR, Hofmann F, Schmelzle T (2013) The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity. PLoS One 8(4):e61916.  https://doi.org/10.1371/journal.pone.0061916 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wang W, Huang J, Wang X, Yuan J, Li X, Feng L, Park JI, Chen J (2012) PTPN14 is required for the density-dependent control of YAP1. Genes Dev 26(17):1959–1971.  https://doi.org/10.1101/gad.192955.112 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17(8):496–510.  https://doi.org/10.1038/nrm.2016.67 PubMedCrossRefGoogle Scholar
  94. 94.
    Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26(1):54–68.  https://doi.org/10.1101/gad.173435.111 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183.  https://doi.org/10.1038/nature10137 PubMedCrossRefGoogle Scholar
  96. 96.
    Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, Fu XD, Mills GB, Guan KL (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150(4):780–791.  https://doi.org/10.1016/j.cell.2012.06.037 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wang Z, Liu P, Zhou X, Wang TX, Feng X, Sun YP, Xiong Y, Yuan HX, Guan KL (2017) Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ. Cancer Res 77(9):2413–2423.  https://doi.org/10.1158/0008-5472.Can-16-3229 PubMedCrossRefGoogle Scholar
  98. 98.
    Zhou X, Wang SY, Wang Z, Feng X, Liu P, Lv XB, Li FL, Yu FX, Sun YP, Yuan HX, Zhu HG, Xiong Y, Lei QY, Guan KL (2015) Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Investig 125(5):2123–2135.  https://doi.org/10.1172/Jci79573 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yu FX, Luo J, Mo JS, Liu GB, Kim YC, Meng ZP, Zhao L, Peyman G, Ouyang H, Jiang W, Zhao JG, Chen X, Zhang LF, Wang CY, Bastian BC, Zhang K, Guan KL (2014) Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25(6):822–830.  https://doi.org/10.1016/j.ccr.2014.04.017 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Feng XD, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino G, Sodhi A, Chen QM, Gutkind JS (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated Rho GTPase signaling circuitry. Cancer Cell 25(6):831–845.  https://doi.org/10.1016/j.ccr.2014.04.016 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y, Pan D, Taylor SS, Lai ZC, Guan KL (2013) Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 27(11):1223–1232.  https://doi.org/10.1101/gad.219402.113 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kim M, Kim M, Lee S, Kuninaka S, Saya H, Lee H, Lee S, Lim DS (2013) cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J 32(11):1543–1555.  https://doi.org/10.1038/emboj.2013.102 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Fernandez BG, Gaspar P, Bras-Pereira C, Jezowska B, Rebelo SR, Janody F (2011) Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 138(11):2337–2346.  https://doi.org/10.1242/dev.063545 PubMedCrossRefGoogle Scholar
  104. 104.
    Sansores-Garcia L, Bossuyt W, Wada K, Yonemura S, Tao C, Sasaki H, Halder G (2011) Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30(12):2325–2335.  https://doi.org/10.1038/emboj.2011.157 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E (2012) A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. EMBO J 31(5):1109–1122.  https://doi.org/10.1038/emboj.2011.487 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, Fassina A, Cordenonsi M, Piccolo S (2014) YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158(1):157–170.  https://doi.org/10.1016/j.cell.2014.06.013 PubMedCrossRefGoogle Scholar
  107. 107.
    Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S (2012) Role of TAZ as mediator of Wnt signaling. Cell 151(7):1443–1456.  https://doi.org/10.1016/j.cell.2012.11.027 PubMedCrossRefGoogle Scholar
  108. 108.
    Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, Gallazzini M, Olson EN, Lam H, Henske EP, Dong Z, Apte U, Pallet N, Johnson RL, Terzi F, Kwiatkowski DJ, Scoazec JY, Martignoni G, Pende M (2014) Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med 211(11):2249–2263.  https://doi.org/10.1084/jem.20140341 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL (2012) YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14(12):1322–1329.  https://doi.org/10.1038/ncb2615 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hansen CG, Ng YL, Lam WL, Plouffe SW, Guan KL (2015) The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res 25(12):1299–1313.  https://doi.org/10.1038/cr.2015.140 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Strassburger K, Tiebe M, Pinna F, Breuhahn K, Teleman AA (2012) Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev Biol 367(2):187–196.  https://doi.org/10.1016/j.ydbio.2012.05.008 PubMedCrossRefGoogle Scholar
  112. 112.
    Sun G, Irvine KD (2013) Ajuba family proteins link JNK to Hippo signaling. Sci Signal 6(292):ra81.  https://doi.org/10.1126/scisignal.2004324 PubMedCrossRefGoogle Scholar
  113. 113.
    Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S (2010) JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis 1:e29.  https://doi.org/10.1038/cddis.2010.7 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lee KK, Yonehara S (2012) Identification of mechanism that couples multisite phosphorylation of Yes-associated protein (YAP) with transcriptional coactivation and regulation of apoptosis. J Biol Chem 287(12):9568–9578.  https://doi.org/10.1074/jbc.M111.296954 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Lin KC, Moroishi T, Meng Z, Jeong HS, Plouffe SW, Sekido Y, Han J, Park HW, Guan KL (2017) Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat Cell Biol 19(8):996–1002.  https://doi.org/10.1038/ncb3581 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hong AW, Meng Z, Yuan HX, Plouffe SW, Moon S, Kim W, Jho EH, Guan KL (2017) Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep 18(1):72–86.  https://doi.org/10.15252/embr.201642681 PubMedCrossRefGoogle Scholar
  117. 117.
    Moon S, Kim W, Kim S, Kim Y, Song Y, Bilousov O, Kim J, Lee T, Cha B, Kim M, Kim H, Katanaev VL, Jho EH (2017) Phosphorylation by NLK inhibits YAP-14-3-3-interactions and induces its nuclear localization. EMBO Rep 18(1):61–71.  https://doi.org/10.15252/embr.201642683 PubMedCrossRefGoogle Scholar
  118. 118.
    Ganem NJ, Cornils H, Chiu SY, O’Rourke KP, Arnaud J, Yimlamai D, Thery M, Camargo FD, Pellman D (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158(4):833–848.  https://doi.org/10.1016/j.cell.2014.06.029 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761.  https://doi.org/10.1101/gad.1602907 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL (2015) Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys J 108(12):2783–2793.  https://doi.org/10.1016/j.bpj.2015.05.010 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wada K, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138(18):3907–3914.  https://doi.org/10.1242/dev.070987 PubMedCrossRefGoogle Scholar
  122. 122.
    Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154(5):1047–1059.  https://doi.org/10.1016/j.cell.2013.07.042 PubMedCrossRefGoogle Scholar
  123. 123.
    Codelia VA, Sun G, Irvine KD (2014) Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr Biol 24(17):2012–2017.  https://doi.org/10.1016/j.cub.2014.07.034 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kim MH, Kim J (2017) Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci 74(8):1457–1474.  https://doi.org/10.1007/s00018-016-2412-x PubMedCrossRefGoogle Scholar
  125. 125.
    Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29(6):783–803.  https://doi.org/10.1016/j.ccell.2016.05.005 PubMedCrossRefGoogle Scholar
  126. 126.
    Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17(23):2054–2060.  https://doi.org/10.1016/j.cub.2007.10.039 PubMedCrossRefGoogle Scholar
  127. 127.
    Lee JH, Kim TS, Yang TH, Koo BK, Oh SP, Lee KP, Oh HJ, Lee SH, Kong YY, Kim JM, Lim DS (2008) A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J 27(8):1231–1242.  https://doi.org/10.1038/emboj.2008.63 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, Avruch J (2011) Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA 108(49):E1312–1320.  https://doi.org/10.1073/pnas.1110428108 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS, Kim MC, Jeong WI, Calvisi DF, Kim JM, Lim DS (2010) The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci USA 107(18):8248–8253.  https://doi.org/10.1073/pnas.0912203107 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Cai J, Maitra A, Anders RA, Taketo MM, Pan D (2015) beta-Catenin destruction complex-independent regulation of Hippo-YAP signaling by APC in intestinal tumorigenesis. Genes Dev 29(14):1493–1506.  https://doi.org/10.1101/gad.264515.115 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, Pazarentzos E, Asthana S, Neel D, Yan JJ, Lu X, Pham L, Wang MM, Karachaliou N, Cao MG, Manzano JL, Ramirez JL, Torres JM, Buttitta F, Rudin CM, Collisson EA, Algazi A, Robinson E, Osman I, Munoz-Couselo E, Cortes J, Frederick DT, Cooper ZA, McMahon M, Marchetti A, Rosell R, Flaherty KT, Wargo JA, Bivona TG (2015) The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet 47(3):250–256.  https://doi.org/10.1038/ng.3218 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lin KC, Park HW, Guan KL (2017) Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem Sci 42(11):862–872.  https://doi.org/10.1016/j.tibs.2017.09.003 PubMedCrossRefGoogle Scholar
  133. 133.
    Hirabayashi S, Cagan RL (2015) Salt-inducible kinases mediate nutrient-sensing to link dietary sugar and tumorigenesis in Drosophila. Elife 4:e08501.  https://doi.org/10.7554/eLife.08501 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490(7421):547–551.  https://doi.org/10.1038/nature11452 PubMedCrossRefGoogle Scholar
  135. 135.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033.  https://doi.org/10.1126/science.1160809 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47.  https://doi.org/10.1016/j.cmet.2015.12.006 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    DeRan M, Yang J, Shen CH, Peters EC, Fitamant J, Chan P, Hsieh M, Zhu S, Asara JM, Zheng B, Bardeesy N, Liu J, Wu X (2014) Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep 9(2):495–503.  https://doi.org/10.1016/j.celrep.2014.09.036 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S, Lim DS, Guan KL (2015) Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 17(4):500–510.  https://doi.org/10.1038/ncb3111 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, Chen J (2015) AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 17(4):490–499.  https://doi.org/10.1038/ncb3113 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, Grifoni D, Pession A, Zanconato F, Guzzo G, Bicciato S, Dupont S (2015) Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34(10):1349–1370.  https://doi.org/10.15252/embj.201490379 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Gailite I, Aerne BL, Tapon N (2015) Differential control of Yorkie activity by LKB1/AMPK and the Hippo/Warts cascade in the central nervous system. Proc Natl Acad Sci USA 112(37):E5169–5178.  https://doi.org/10.1073/pnas.1505512112 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wehr MC, Holder MV, Gailite I, Saunders RE, Maile TM, Ciirdaeva E, Instrell R, Jiang M, Howell M, Rossner MJ, Tapon N (2013) Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nat Cell Biol 15(1):61–71.  https://doi.org/10.1038/ncb2658 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Peng C, Zhu Y, Zhang W, Liao Q, Chen Y, Zhao X, Guo Q, Shen P, Zhen B, Qian X, Yang D, Zhang JS, Xiao D, Qin W, Pei H (2017) Regulation of the Hippo-YAP pathway by glucose sensor O-GlcNAcylation. Mol Cell 68(3):591–604 e595.  https://doi.org/10.1016/j.molcel.2017.10.010 PubMedCrossRefGoogle Scholar
  144. 144.
    Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, Zhu G, Zhao Y, Chen Y, Yu Y, Pan Q, Wang J, Sun F (2017) The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun 8:15280.  https://doi.org/10.1038/ncomms15280 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16(4):357–366.  https://doi.org/10.1038/ncb2936 PubMedCrossRefGoogle Scholar
  146. 146.
    Wang Z, Wu Y, Wang H, Zhang Y, Mei L, Fang X, Zhang X, Zhang F, Chen H, Liu Y, Jiang Y, Sun S, Zheng Y, Li N, Huang L (2014) Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci USA 111(1):E89–98.  https://doi.org/10.1073/pnas.1319190110 PubMedCrossRefGoogle Scholar
  147. 147.
    Cox AG, Hwang KL, Brown KK, Evason K, Beltz S, Tsomides A, O’Connor K, Galli GG, Yimlamai D, Chhangawala S, Yuan M, Lien EC, Wucherpfennig J, Nissim S, Minami A, Cohen DE, Camargo FD, Asara JM, Houvras Y, Stainier DYR, Goessling W (2016) Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol 18(8):886–896.  https://doi.org/10.1038/ncb3389 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Guo X, Zhao Y, Yan H, Yang Y, Shen S, Dai X, Ji X, Ji F, Gong XG, Li L, Bai X, Feng XH, Liang T, Ji J, Chen L, Wang H, Zhao B (2017) Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev 31(3):247–259.  https://doi.org/10.1101/gad.294348.116 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Wang G, Lu X, Dey P, Deng P, Wu CC, Jiang S, Fang Z, Zhao K, Konaparthi R, Hua S, Zhang J, Li-Ning-Tapia EM, Kapoor A, Wu CJ, Patel NB, Guo Z, Ramamoorthy V, Tieu TN, Heffernan T, Zhao D, Shang X, Khadka S, Hou P, Hu B, Jin EJ, Yao W, Pan X, Ding Z, Shi Y, Li L, Chang Q, Troncoso P, Logothetis CJ, McArthur MJ, Chin L, Wang YA, DePinho RA (2016) Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov 6(1):80–95.  https://doi.org/10.1158/2159-8290.CD-15-0224 PubMedCrossRefGoogle Scholar
  150. 150.
    Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D (2016) Toll receptor-mediated Hippo signaling controls innate immunity in Drosophila. Cell 164(3):406–419.  https://doi.org/10.1016/j.cell.2015.12.029 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV, Qin J, Carson DA, Guan KL (2016) The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167(6):1525–1539 e1517.  https://doi.org/10.1016/j.cell.2016.11.005 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Meng F, Zhou R, Wu S, Zhang Q, Jin Q, Zhou Y, Plouffe SW, Liu S, Song H, Xia Z, Zhao B, Ye S, Feng XH, Guan KL, Zou J, Xu P (2016) Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes Dev 30(9):1086–1100.  https://doi.org/10.1101/gad.277533.116 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Zhang Q, Meng F, Chen S, Plouffe SW, Wu S, Liu S, Li X, Zhou R, Wang J, Zhao B, Liu J, Qin J, Zou J, Feng XH, Guan KL, Xu P (2017) Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nat Cell Biol 19(4):362–374.  https://doi.org/10.1038/ncb3496 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Lee BS, Park DI, Lee DH, Lee JE, Yeo MK, Park YH, Lim DS, Choi W, Lee DH, Yoo G, Kim HB, Kang D, Moon JY, Jung SS, Kim JO, Cho SY, Park HS, Chung C (2017) Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun 491(2):493–499.  https://doi.org/10.1016/j.bbrc.2017.07.007 PubMedCrossRefGoogle Scholar
  155. 155.
    Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, Yang M, Cao W, Wang L, Wu Z (2017) Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36(42):5829–5839.  https://doi.org/10.1038/onc.2017.188 PubMedCrossRefGoogle Scholar
  156. 156.
    Thaventhiran JE, Hoffmann A, Magiera L, de la Roche M, Lingel H, Brunner-Weinzierl M, Fearon DT (2012) Activation of the Hippo pathway by CTLA-4 regulates the expression of Blimp-1 in the CD8+ T cell. Proc Natl Acad Sci USA 109(33):E2223–2229.  https://doi.org/10.1073/pnas.1209115109 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, Xiong X, Hong L, Xie C, Gao J, Shi Y, Peng J, Johnson RL, Xiao N, Lu L, Han J, Zhou D, Chen L (2017) The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol 18(7):800–812.  https://doi.org/10.1038/ni.3748 PubMedCrossRefGoogle Scholar
  158. 158.
    Zhou D, Medoff BD, Chen L, Li L, Zhang XF, Praskova M, Liu M, Landry A, Blumberg RS, Boussiotis VA, Xavier R, Avruch J (2008) The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naive T cells. Proc Natl Acad Sci USA 105(51):20321–20326.  https://doi.org/10.1073/pnas.0810773105 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, Wang Y, Su H, Jia A, Hu Y, Han L, Zhang J, Li S, Tao W, Liu G (2017) Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun 8:14275.  https://doi.org/10.1038/ncomms14275 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Jansson L, Larsson J (2012) Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1. PLoS One 7(2):e32013.  https://doi.org/10.1371/journal.pone.0032013 PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26(12):1300–1305.  https://doi.org/10.1101/gad.192856.112 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Dasari VR, Mazack V, Feng W, Nash J, Carey DJ, Gogoi R (2017) Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells. Oncotarget 8(17):28628–28640.  https://doi.org/10.18632/oncotarget.15614 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Chen HH, Mullett SJ, Stewart AF (2004) Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes. J Biol Chem 279(29):30800–30806.  https://doi.org/10.1074/jbc.M400154200 PubMedCrossRefGoogle Scholar
  164. 164.
    Jiao S, Li C, Hao Q, Miao H, Zhang L, Li L, Zhou Z (2017) VGLL4 targets a TCF4–TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat Commun 8:14058.  https://doi.org/10.1038/ncomms14058 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Zhou Z, Hu T, Xu Z, Lin Z, Zhang Z, Feng T, Zhu L, Rong Y, Shen H, Luk JM, Zhang X, Qin N (2015) Targeting Hippo pathway by specific interruption of YAP–TEAD interaction using cyclic YAP-like peptides. FASEB J 29(2):724–732.  https://doi.org/10.1096/fj.14-262980 PubMedCrossRefGoogle Scholar
  166. 166.
    Pobbati AV, Han X, Hung AW, Weiguang S, Huda N, Chen GY, Kang C, Chia CS, Luo X, Hong W, Poulsen A (2015) Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy. Structure 23(11):2076–2086.  https://doi.org/10.1016/j.str.2015.09.009 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Chan P, Han X, Zheng B, DeRan M, Yu J, Jarugumilli GK, Deng H, Pan D, Luo X, Wu X (2016) Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat Chem Biol 12(4):282–289.  https://doi.org/10.1038/nchembio.2036 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Noland CL, Gierke S, Schnier PD, Murray J, Sandoval WN, Sagolla M, Dey A, Hannoush RN, Fairbrother WJ, Cunningham CN (2016) Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24(1):179–186.  https://doi.org/10.1016/j.str.2015.11.005 PubMedCrossRefGoogle Scholar
  169. 169.
    Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC (2012) beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151(7):1457–1473.  https://doi.org/10.1016/j.cell.2012.11.026 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Mi W, Lin Q, Childress C, Sudol M, Robishaw J, Berlot CH, Shabahang M, Yang W (2015) Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene 34(24):3095–3106.  https://doi.org/10.1038/onc.2014.251 PubMedCrossRefGoogle Scholar
  171. 171.
    Mo JS, Yu FX, Gong R, Brown JH, Guan KL (2012) Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev 26(19):2138–2143.  https://doi.org/10.1101/gad.197582.112 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Kim NG, Gumbiner BM (2015) Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol 210(3):503–515.  https://doi.org/10.1083/jcb.201501025 PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620.  https://doi.org/10.1038/nature08356 PubMedCrossRefGoogle Scholar
  174. 174.
    Troilo A, Benson EK, Esposito D, Garibsingh RA, Reddy EP, Mungamuri SK, Aaronson SA (2016) Angiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations. Oncotarget 7(20):28765–28782.  https://doi.org/10.18632/oncotarget.9117 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Wang W, Li N, Li X, Tran MK, Han X, Chen J (2015) Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep 13(3):524–532.  https://doi.org/10.1016/j.celrep.2015.09.014 PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Serrano I, McDonald PC, Lock F, Muller WJ, Dedhar S (2013) Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat Commun 4:2976.  https://doi.org/10.1038/ncomms3976 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Bao Y, Nakagawa K, Yang Z, Ikeda M, Withanage K, Ishigami-Yuasa M, Okuno Y, Hata S, Nishina H, Hata Y (2011) A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J Biochem 150(2):199–208.  https://doi.org/10.1093/jb/mvr063 PubMedCrossRefGoogle Scholar
  178. 178.
    Fan F, He Z, Kong LL, Chen Q, Yuan Q, Zhang S, Ye J, Liu H, Sun X, Geng J, Yuan L, Hong L, Xiao C, Zhang W, Sun X, Li Y, Wang P, Huang L, Wu X, Ji Z, Wu Q, Xia NS, Gray NS, Chen L, Yun CH, Deng X, Zhou D (2016) Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci Transl Med 8(352):352ra108.  https://doi.org/10.1126/scitranslmed.aaf2304 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, College of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea

Personalised recommendations