Cellular and Molecular Life Sciences

, Volume 75, Issue 15, pp 2843–2856 | Cite as

Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion

  • Pauline De Berdt
  • Pauline Bottemanne
  • John Bianco
  • Mireille Alhouayek
  • Anibal Diogenes
  • Amy Llyod
  • Jose Gerardo-Nava
  • Gary A. Brook
  • Véronique Miron
  • Giulio G. Muccioli
  • Anne des Rieux
Original Article


Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration. Dental stem cells from human apical papilla (SCAP) can be easily obtained at the removal of an adult immature tooth. This offers a minimally invasive approach to re-use this tissue as a source of stem cells, as compared to biopsying neural tissue from a patient with a spinal cord injury. We assessed the potential of SCAP to exert neuroprotective effects by investigating two possible modes of action: modulation of neuro-inflammation and oligodendrocyte progenitor cell (OPC) differentiation. SCAP were co-cultured with LPS-activated microglia, LPS-activated rat spinal cord organotypic sections (SCOS), and LPS-activated co-cultures of SCOS and spinal cord adult OPC. We showed for the first time that SCAP can induce a reduction of TNF-α expression and secretion in inflamed spinal cord tissues and can stimulate OPC differentiation via activin-A secretion. This work underlines the potential therapeutic benefits of SCAP for spinal cord injury repair.


Spinal cord Dental stem cells Inflammation Oligodendrocyte progenitor cells Differentiation 



Anne des Rieux is a Research Associate, Mireille Alhouayek is a Post-doctoral Researcher and Pauline Bottemanne is a FRIA Doctoral Researcher at the FRS-FNRS (Fonds de la Recherche Scientifique). The authors acknowledge Prof. O. Feron (UCL) for the access to hypoxia incubator and Daniel Soong (EdU) for his help with MBP quantification as well as Loïc Germain (UCL) for his support in the development of the tri-cultures. We are also grateful to Université Catholique de Louvain (FSR) and International Foundation for Research in Paraplegia (IRP) for the financial support. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Supplementary material

18_2018_2764_MOESM1_ESM.tiff (960 kb)
Supplementary material 1 (TIFF 960 kb)


  1. 1.
    Bianco J, De Berdt P, Deumens R, des Rieux A (2016) Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 73(7):1413–1437. CrossRefPubMedGoogle Scholar
  2. 2.
    Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1(1):80–100. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100(23):13632–13637. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301. CrossRefPubMedGoogle Scholar
  5. 5.
    Kyritsis N, Kizil C, Brand M (2014) Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 24(2):128–135. CrossRefPubMedGoogle Scholar
  6. 6.
    Held KS, Lane TE (2014) Spinal cord injury, immunodepression, and antigenic challenge. Semin Immunol 26(5):415–420. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Xue H, Zhang XY, Liu JM, Song Y, Liu TT, Chen D (2013) NDGA reduces secondary damage after spinal cord injury in rats via anti-inflammatory effects. Brain Res 1516:83–92. CrossRefPubMedGoogle Scholar
  8. 8.
    Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT, Johnson WE, Baba H (2012) Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 29(8):1614–1625. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10(12):580–583. CrossRefPubMedGoogle Scholar
  10. 10.
    Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2015) Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 8:35. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Badner A, Siddiqui AM, Fehlings MG (2017) Spinal cord injuries: how could cell therapy help? Expert Opin Biol Ther. PubMedCrossRefGoogle Scholar
  12. 12.
    Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Martinez AM, Goulart CO, Ramalho Bdos S, Oliveira JT, Almeida FM (2014) Neurotrauma and mesenchymal stem cells treatment: from experimental studies to clinical trials. World J Stem Cells 6(2):179–194. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hsuan YC, Lin CH, Chang CP, Lin MT (2016) Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav 6(10):e00526. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chio CC, Lin MT, Chang CP (2015) Microglial activation as a compelling target for treating acute traumatic brain injury. Curr Med Chem 22(6):759–770CrossRefPubMedGoogle Scholar
  16. 16.
    Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F, De Rosa A, Laino L, d’Aquino R, Tirino V, Papaccio G (2013) Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med 2(4):316–324. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Karaoz E, Demircan PC, Saglam O, Aksoy A, Kaymaz F, Duruksu G (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136(4):455–473. CrossRefPubMedGoogle Scholar
  19. 19.
    Pomerat CM, Contino RM (1965) The cultivation of dental tissues. Oral Surg Oral Med Oral Pathol 19:628–632CrossRefPubMedGoogle Scholar
  20. 20.
    Yang C, Li X, Sun L, Guo W, Tian W (2017) Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng 14(2):026005. CrossRefPubMedGoogle Scholar
  21. 21.
    De Berdt P, Vanacker J, Ucakar B, Elens L, Diogenes A, Leprince JG, Deumens R, des Rieux A (2015) Dental apical papilla as therapy for spinal cord injury. J Dent Res 94(11):1575–1581. CrossRefPubMedGoogle Scholar
  22. 22.
    Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jeong J, Ahn M, Sim KB, Moon C, Shin T (2014) Immunohistochemical analysis of activin A expression in spinal cords of rats with clip compression injuries. Acta Histochem 116(5):747–752. CrossRefPubMedGoogle Scholar
  24. 24.
    Ruparel NB, de Almeida JF, Henry MA, Diogenes A (2013) Characterization of a stem cell of apical papilla cell line: effect of passage on cellular phenotype. J Endod 39(3):357–363. CrossRefPubMedGoogle Scholar
  25. 25.
    Vanacker J, Viswanath A, De Berdt P, Everard A, Cani PD, Bouzin C, Feron O, Diogenes A, Leprince JG, des Rieux A (2014) Hypoxia modulates the differentiation potential of stem cells of the apical papilla. J Endod 40(9):1410–1418. CrossRefPubMedGoogle Scholar
  26. 26.
    Bianco J, Carradori D, Deumens R, des Rieux A (2017) Rapid serum-free isolation of oligodendrocyte progenitor cells from adult rat spinal cord. Stem Cell Rev 13(4):499–512. CrossRefPubMedGoogle Scholar
  27. 27.
    Gerardo-Nava J, Hodde D, Katona I, Bozkurt A, Grehl T, Steinbusch HW, Weis J, Brook GA (2014) Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds. Biomaterials 35(14):4288–4296. CrossRefPubMedGoogle Scholar
  28. 28.
    Refaat B (2014) Role of activins in embryo implantation and diagnosis of ectopic pregnancy: a review. Reprod Biol Endocrinol 12:116. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Alhouayek M, Masquelier J, Cani PD, Lambert DM, Muccioli GG (2013) Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6. Proc Natl Acad Sci USA 110(43):17558–17563. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rouanet C, Reges D, Rocha E, Gagliardi V, Silva GS (2017) Traumatic spinal cord injury: current concepts and treatment update. Arq Neuropsiquiatr 75(6):387–393. CrossRefPubMedGoogle Scholar
  31. 31.
    Gerardo-Nava J, Mayorenko II, Grehl T, Steinbusch HW, Weis J, Brook GA (2013) Differential pattern of neuroprotection in lumbar, cervical and thoracic spinal cord segments in an organotypic rat model of glutamate-induced excitotoxicity. J Chem Neuroanat 53:11–17. CrossRefPubMedGoogle Scholar
  32. 32.
    Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN (2013) Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol 248:429–440. CrossRefPubMedGoogle Scholar
  33. 33.
    Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR (2005) Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci 25(30):6947–6957. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, Wiesenfeld-Hallin Z, Kurpad SN, Frisen J, Olson L (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8(3):346–353. CrossRefPubMedGoogle Scholar
  35. 35.
    Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W (2014) Remyelination after spinal cord injury: is it a target for repair? Prog Neurobiol 117:54–72. CrossRefPubMedGoogle Scholar
  36. 36.
    Jeong YH, Park JS, Kim DH, Kang JL, Kim HS (2017) Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation. Pharmacol Res 119:431–442. CrossRefPubMedGoogle Scholar
  37. 37.
    Jose S, Tan SW, Ooi YY, Ramasamy R, Vidyadaran S (2014) Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-alpha levels. J Neuroinflammation 11:149. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Demircan PC, Sariboyaci AE, Unal ZS, Gacar G, Subasi C, Karaoz E (2011) Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13(10):1205–1220. CrossRefPubMedGoogle Scholar
  39. 39.
    Yamagata M, Yamamoto A, Kako E, Kaneko N, Matsubara K, Sakai K, Sawamoto K, Ueda M (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44(2):551–554. CrossRefPubMedGoogle Scholar
  40. 40.
    Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6(5):552–570. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zachar L, Bacenkova D, Rosocha J (2016) Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res 9:231–240. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dostert G, Mesure B, Menu P, Velot E (2017) How do mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication? Front Cell Dev Biol 5:6. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lee YB, Yune TY, Baik SY, Shin YH, Du S, Rhim H, Lee EB, Kim YC, Shin ML, Markelonis GJ, Oh TH (2000) Role of tumor necrosis factor-alpha in neuronal and glial apoptosis after spinal cord injury. Exp Neurol 166(1):190–195. CrossRefPubMedGoogle Scholar
  44. 44.
    Amini Pishva A, Akbari M, Farahabadi A, Arabkheradmand A, Beyer C, Dashti N, Moradi F, Hassanzadeh G (2016) Effect of estrogen therapy on TNF-alpha and iNOS gene expression in spinal cord injury model. Acta Med Iran 54(5):296–301PubMedGoogle Scholar
  45. 45.
    Liu Y, Zhang R, Yan K, Chen F, Huang W, Lv B, Sun C, Xu L, Li F, Jiang X (2014) Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflammation 11:135. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Matsubara K, Matsushita Y, Sakai K, Kano F, Kondo M, Noda M, Hashimoto N, Imagama S, Ishiguro N, Suzumura A, Ueda M, Furukawa K, Yamamoto A (2015) Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci 35(6):2452–2464. CrossRefPubMedGoogle Scholar
  47. 47.
    Jiang CM, Liu J, Zhao JY, Xiao L, An S, Gou YC, Quan HX, Cheng Q, Zhang YL, He W, Wang YT, Yu WJ, Huang YF, Yi YT, Chen Y, Wang J (2015) Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells. J Dent Res 94(1):69–77. CrossRefPubMedGoogle Scholar
  48. 48.
    Page P, DeJong J, Bandstra A, Boomsma RA (2014) Effect of serum and oxygen concentration on gene expression and secretion of paracrine factors by mesenchymal stem cells. Int J Cell Biol 2014:601063. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Paquet J, Deschepper M, Moya A, Logeart-Avramoglou D, Boisson-Vidal C, Petite H (2015) oxygen tension regulates human mesenchymal stem cell paracrine functions. Stem Cells Transl Med 4(7):809–821. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 28(4):1634–1643. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Investig 122(1):80–90. PubMedCrossRefGoogle Scholar
  52. 52.
    El-Akabawy G, Rashed LA (2015) Beneficial effects of bone marrow-derived mesenchymal stem cell transplantation in a non-immune model of demyelination. Ann Anat 198:11–20. CrossRefPubMedGoogle Scholar
  53. 53.
    Djouad F, Jackson WM, Bobick BE, Janjanin S, Song Y, Huang GT, Tuan RS (2010) Activin A expression regulates multipotency of mesenchymal progenitor cells. Stem Cell Res Ther 1(2):11. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Abe M, Shintani Y, Eto Y, Harada K, Kosaka M, Matsumoto T (2002) Potent induction of activin A secretion from monocytes and bone marrow stromal fibroblasts by cognate interaction with activated T cells. J Leukoc Biol 72(2):347–352PubMedGoogle Scholar
  55. 55.
    Chatterjee D, Marquardt N, Tufa DM, Hatlapatka T, Hass R, Kasper C, von Kaisenberg C, Schmidt RE, Jacobs R (2014) Human umbilical cord-derived mesenchymal stem cells utilize activin-A to suppress interferon-gamma production by natural killer cells. Front Immunol 5:662. PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fodor J, Gomba-Toth A, Olah T, Almassy J, Zador E, Csernoch L (2017) Follistatin treatment suppresses SERCA1b levels independently of other players of calcium homeostasis in C2C12 myotubes. J Muscle Res Cell Motil. PubMedCrossRefGoogle Scholar
  57. 57.
    Boulanger JJ, Messier C (2014) From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 269:343–366. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pauline De Berdt
    • 1
  • Pauline Bottemanne
    • 2
  • John Bianco
    • 1
  • Mireille Alhouayek
    • 2
  • Anibal Diogenes
    • 3
  • Amy Llyod
    • 4
  • Jose Gerardo-Nava
    • 5
  • Gary A. Brook
    • 5
  • Véronique Miron
    • 4
  • Giulio G. Muccioli
    • 2
  • Anne des Rieux
    • 1
  1. 1.Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB)Université Catholique de LouvainBrusselsBelgium
  2. 2.Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL)Université Catholique de LouvainBrusselsBelgium
  3. 3.Department of EndodonticsUniversity of Texas Health Science Center at San AntonioTexasUSA
  4. 4.MRC Center for Reproductive Health, The Queen’s Medical Research InstituteThe University of EdinburghEdinburghUK
  5. 5.Institute of NeuropathologyUniklinik RWTH AachenAachenGermany

Personalised recommendations