Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 9, pp 1509–1520 | Cite as

Therapeutic approaches for induction of tolerance and immune quiescence in corneal allotransplantation

  • Maryam Tahvildari
  • Afsaneh Amouzegar
  • William Foulsham
  • Reza Dana
Review

Abstract

The cornea is the most commonly transplanted tissue in the body. Corneal grafts in low-risk recipients enjoy high success rates, yet over 50% of high-risk grafts (with inflamed and vascularized host beds) are rejected. As our understanding of the cellular and molecular pathways that mediate rejection has deepened, a number of novel therapeutic strategies have been unveiled. This manuscript reviews therapeutic approaches to promote corneal transplant survival through targeting (1) corneal lymphangiogenesis and hemangiogenesis, (2) antigen presenting cells, (3) effector and regulatory T cells, and (4) mesenchymal stem cells.

Keywords

Corneal transplantation Graft rejection Allotolerance Regulatory T cells Antigen presenting cells Corneal hemangiogenesis Corneal lymphangiogenesis 

Notes

Acknowledgements

This work was supported by National Institutes of Health/National Eye Institute Grant EY012963.

Compliance with ethical standards

Conflict of interest

The authors have no financial conflicts of interest.

References

  1. 1.
    Niederkorn JY (2013) Corneal transplantation and immune privilege. Int Rev Immunol 32(1):57–67PubMedCrossRefGoogle Scholar
  2. 2.
    Niederkorn JY (2015) Immunology of corneal allografts: insights from animal models. J Clin Exp Ophthalmol 6(3):429PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Tahvildari M, Emami-Naeini P, Omoto M, Mashaghi A, Chauhan SK, Dana R (2017) Treatment of donor corneal tissue with immunomodulatory cytokines: a novel strategy to promote graft survival in high-risk corneal transplantation. Sci Rep 7(1):971PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Amouzegar A, Chauhan SK, Dana R (2016) Alloimmunity and tolerance in corneal transplantation. J Immunol 196(10):3983–3991PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Williams KA, Coster DJ (2007) The immunobiology of corneal transplantation. Transplantation 84(7):806–813PubMedCrossRefGoogle Scholar
  6. 6.
    Sangwan VS, Ramamurthy B, Shah U, Garg P, Sridhar MS, Rao GN (2005) Outcome of corneal transplant rejection: a 10-year study. Clin Exp Ophthalmol 33(6):623–627PubMedCrossRefGoogle Scholar
  7. 7.
    Price FW Jr, Whitson WE, Collins KS, Marks RG (1993) Five-year corneal graft survival. A large, single-center patient cohort. Arch Ophthalmol 111(6):799–805PubMedCrossRefGoogle Scholar
  8. 8.
    Renfro L, Snow JS (1992) Ocular effects of topical and systemic steroids. Dermatol Clin 10(3):505–512PubMedCrossRefGoogle Scholar
  9. 9.
    Khodadoust AA (2008) The allograft rejection reaction: the leading cause of late failure of clinical corneal grafts. Wiley, New York, pp 151–167Google Scholar
  10. 10.
    Yamagami S, Dana MR (2001) The critical role of lymph nodes in corneal alloimmunization and graft rejection. Investig Ophthalmol Vis Sci 42(6):1293–1298Google Scholar
  11. 11.
    Tan Y, Abdulreda MH, Cruz-Guilloty F, Cutrufello N, Shishido A, Martinez RE, Duffort S, Xia X, Echegaray-Mendez J, Levy RB, Berggren PO, Perez VL (2013) Role of T cell recruitment and chemokine-regulated intra-graft T cell motility patterns in corneal allograft rejection. Am J Transplant 13(6):1461–1473PubMedCrossRefGoogle Scholar
  12. 12.
    Baer JC, Foster CS (1992) Corneal laser photocoagulation for treatment of neovascularization. Efficacy of 577 nm yellow dye laser. Ophthalmology 99(2):173–179PubMedCrossRefGoogle Scholar
  13. 13.
    Pillai CT, Dua HS, Hossain P (2000) Fine needle diathermy occlusion of corneal vessels. Investig Ophthalmol Vis Sci 41(8):2148–2153Google Scholar
  14. 14.
    Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478PubMedCrossRefGoogle Scholar
  15. 15.
    Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80PubMedCrossRefGoogle Scholar
  16. 16.
    Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438(7070):946–953PubMedCrossRefGoogle Scholar
  17. 17.
    Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, Kholova I, Kauppinen RA, Achen MG, Stacker SA, Alitalo K, Yla-Herttuala S (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92(10):1098–1106PubMedCrossRefGoogle Scholar
  18. 18.
    Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, Qi JH, Claesson-Welsh L, Alitalo K (1998) Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 95(24):14389–14394PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hong YK, Lange-Asschenfeldt B, Velasco P, Hirakawa S, Kunstfeld R, Brown LF, Bohlen P, Senger DR, Detmar M (2004) VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 18(10):1111–1113PubMedCrossRefGoogle Scholar
  20. 20.
    Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Investig 113(7):1040–1050PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G, Wiegand S, Chen L, Cursiefen C (2010) Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol 184(2):535–539PubMedCrossRefGoogle Scholar
  23. 23.
    Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, Chappell J, Wilting J, Weich HA, Yamagami S, Amano S, Mizuki N, Alexander JS, Peterson ML, Brekken RA, Hirashima M, Capoor S, Usui T, Ambati BK, Ambati J (2009) Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15(9):1023–1030PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cursiefen C, Cao J, Chen L, Liu Y, Maruyama K, Jackson D, Kruse FE, Wiegand SJ, Dana MR, Streilein JW (2004) Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Investig Ophthalmol Vis Sci 45(8):2666–2673CrossRefGoogle Scholar
  25. 25.
    Bachmann BO, Bock F, Wiegand SJ, Maruyama K, Dana MR, Kruse FE, Luetjen-Drecoll E, Cursiefen C (2008) Promotion of graft survival by vascular endothelial growth factor a neutralization after high-risk corneal transplantation. Arch Ophthalmol 126(1):71–77PubMedCrossRefGoogle Scholar
  26. 26.
    Dastjerdi MH, Saban DR, Okanobo A, Nallasamy N, Sadrai Z, Chauhan SK, Hajrasouliha AR, Dana R (2010) Effects of topical and subconjunctival bevacizumab in high-risk corneal transplant survival. Investig Ophthalmol Vis Sci 51(5):2411–2417CrossRefGoogle Scholar
  27. 27.
    Rocher N, Behar-Cohen F, Pournaras JA, Naud MC, Jeanny JC, Jonet L, Bourges JL (2011) Effects of rat anti-VEGF antibody in a rat model of corneal graft rejection by topical and subconjunctival routes. Mol Vis 17:104–112PubMedPubMedCentralGoogle Scholar
  28. 28.
    Dohlman TH, Omoto M, Hua J, Stevenson W, Lee SM, Chauhan SK, Dana R (2015) VEGF-trap aflibercept significantly improves long-term graft survival in high-risk corneal transplantation. Transplantation 99(4):678–686PubMedCrossRefGoogle Scholar
  29. 29.
    Di Zazzo A, Tahvildari M, Subbarayal B, Yin J, Dohlman TH, Inomata T, Mashaghi A, Chauhan SK, Dana R (2017) Proangiogenic function of T cells in corneal transplantation. Transplantation 101(4):778–785PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zhang J, Silva T, Yarovinsky T, Manes TD, Tavakoli S, Nie L, Tellides G, Pober JS, Bender JR, Sadeghi MM (2010) VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodeling. Circ Res 107(3):408–417PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Chung ES, Chauhan SK, Jin Y, Nakao S, Hafezi-Moghadam A, van Rooijen N, Zhang Q, Chen L, Dana R (2009) Contribution of macrophages to angiogenesis induced by vascular endothelial growth factor receptor-3-specific ligands. Am J Pathol 175(5):1984–1992PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bhatti N, Qidwai U, Hussain M, Kazi A (2013) Efficacy of sub-conjunctival and topical bevacizumab in high-risk corneal transplant survival. J Pak Med Assoc 63(10):1256–1259PubMedGoogle Scholar
  33. 33.
    Dekaris I, Gabric N, Draca N, Pauk-Gulic M, Milicic N (2015) Three-year corneal graft survival rate in high-risk cases treated with subconjunctival and topical bevacizumab. Graefes Arch Clin Exp Ophthalmol 253(2):287–294PubMedCrossRefGoogle Scholar
  34. 34.
    Fasciani R, Mosca L, Giannico MI, Ambrogio SA, Balestrazzi E (2015) Subconjunctival and/or intrastromal bevacizumab injections as preconditioning therapy to promote corneal graft survival. Int Ophthalmol 35(2):221–227PubMedCrossRefGoogle Scholar
  35. 35.
    Vassileva PI, Hergeldzhieva TG (2009) Avastin use in high risk corneal transplantation. Graefes Arch Clin Exp Ophthalmol 247(12):1701–1706PubMedCrossRefGoogle Scholar
  36. 36.
    Al-Mahmood S, Colin S, Farhat N, Thorin E, Steverlynck C, Chemtob S (2009) Potent in vivo antiangiogenic effects of GS-101 (5′-TATCCGGAGGGCTCGCCATGCTGCT-3′), an antisense oligonucleotide preventing the expression of insulin receptor substrate-1. J Pharmacol Exp Ther 329(2):496–504PubMedCrossRefGoogle Scholar
  37. 37.
    Cursiefen C, Viaud E, Bock F, Geudelin B, Ferry A, Kadlecova P, Levy M, Al Mahmood S, Colin S, Thorin E, Majo F, Frueh B, Wilhelm F, Meyer-Ter-Vehn T, Geerling G, Bohringer D, Reinhard T, Meller D, Pleyer U, Bachmann B, Seitz B (2014) Aganirsen antisense oligonucleotide eye drops inhibit keratitis-induced corneal neovascularization and reduce need for transplantation: the I-CAN study. Ophthalmology 121(9):1683–1692PubMedCrossRefGoogle Scholar
  38. 38.
    Murthy RC, McFarland TJ, Yoken J, Chen S, Barone C, Burke D, Zhang Y, Appukuttan B, Stout JT (2003) Corneal transduction to inhibit angiogenesis and graft failure. Investig Ophthalmol Vis Sci 44(5):1837–1842CrossRefGoogle Scholar
  39. 39.
    Parker M, Bellec J, McFarland T, Scripps V, Appukuttan B, Hartzell M, Yeager A, Hady T, Mitrophanous KA, Stout T, Ellis S (2014) Suppression of neovascularization of donor corneas by transduction with equine infectious anemia virus-based lentiviral vectors expressing endostatin and angiostatin. Hum Gene Ther 25(5):408–418PubMedCrossRefGoogle Scholar
  40. 40.
    Bachmann B, Taylor RS, Cursiefen C (2010) Corneal neovascularization as a risk factor for graft failure and rejection after keratoplasty: an evidence-based meta-analysis. Ophthalmology 117(7):1300–1305 e1307PubMedCrossRefGoogle Scholar
  41. 41.
    Cursiefen C, Colin J, Dana R, Diaz-Llopis M, Faraj LA, Garcia-Delpech S, Geerling G, Price FW, Remeijer L, Rouse BT, Seitz B, Udaondo P, Meller D, Dua H (2012) Consensus statement on indications for anti-angiogenic therapy in the management of corneal diseases associated with neovascularisation: outcome of an expert roundtable. Br J Ophthalmol 96(1):3–9PubMedCrossRefGoogle Scholar
  42. 42.
    Streilein JW, Toews GB, Bergstresser PR (1979) Corneal allografts fail to express Ia antigens. Nature 282(5736):326–327PubMedCrossRefGoogle Scholar
  43. 43.
    Liu Y, Hamrah P, Zhang Q, Taylor AW, Dana MR (2002) Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) class II-positive dendritic cells derived from MHC class II-negative grafts. J Exp Med 195(2):259–268PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hamrah P, Dana MR (2007) Corneal antigen-presenting cells. Chem Immunol Allergy 92:58–70PubMedCrossRefGoogle Scholar
  45. 45.
    Hamrah P, Huq SO, Liu Y, Zhang Q, Dana MR (2003) Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. J Leukoc Biol 74(2):172–178PubMedCrossRefGoogle Scholar
  46. 46.
    Nakamura T, Ishikawa F, Sonoda KH, Hisatomi T, Qiao H, Yamada J, Fukata M, Ishibashi T, Harada M, Kinoshita S (2005) Characterization and distribution of bone marrow-derived cells in mouse cornea. Investig Ophthalmol Vis Sci 46(2):497–503CrossRefGoogle Scholar
  47. 47.
    Hamrah P, Zhang Q, Liu Y, Dana MR (2002) Novel characterization of MHC class II-negative population of resident corneal Langerhans cell-type dendritic cells. Investig Ophthalmol Vis Sci 43(3):639–646Google Scholar
  48. 48.
    Flynn TH, Mitchison NA, Ono SJ, Larkin DF (2008) Aqueous humor alloreactive cell phenotypes, cytokines and chemokines in corneal allograft rejection. Am J Transplant 8(7):1537–1543PubMedCrossRefGoogle Scholar
  49. 49.
    Slegers TP, Broersma L, van Rooijen N, Hooymans JM, van Rij G, van der Gaag R (2004) Macrophages play a role in the early phase of corneal allograft rejection in rats. Transplantation 77(11):1641–1646PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang X, Shen L, Jin Y, Saban DR, Chauhan SK, Dana R (2009) Depletion of passenger leukocytes from corneal grafts: an effective means of promoting transplant survival? Investig Ophthalmol Vis Sci 50(7):3137–3144CrossRefGoogle Scholar
  51. 51.
    Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327(5966):656–661PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, Chu FF, Randolph GJ, Rudensky AY, Nussenzweig M (2009) In vivo analysis of dendritic cell development and homeostasis. Science 324(5925):392–397PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hamrah P, Liu Y, Zhang Q, Dana MR (2003) Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol 121(8):1132–1140PubMedCrossRefGoogle Scholar
  54. 54.
    Huq S, Liu Y, Benichou G, Dana MR (2004) Relevance of the direct pathway of sensitization in corneal transplantation is dictated by the graft bed microenvironment. J Immunol 173(7):4464–4469PubMedCrossRefGoogle Scholar
  55. 55.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMedCrossRefGoogle Scholar
  56. 56.
    Hattori T, Saban DR, Emami-Naeini P, Chauhan SK, Funaki T, Ueno H, Dana R (2012) Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation. J Leukoc Biol 91(4):621–627PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jin Y, Shen L, Chong EM, Hamrah P, Zhang Q, Chen L, Dana MR (2007) The chemokine receptor CCR7 mediates corneal antigen-presenting cell trafficking. Mol Vis 13:626–634PubMedPubMedCentralGoogle Scholar
  58. 58.
    Hamrah P, Yamagami S, Liu Y, Zhang Q, Vora SS, Lu B, Gerard CJ, Dana MR (2007) Deletion of the chemokine receptor CCR1 prolongs corneal allograft survival. Investig Ophthalmol Vis Sci 48(3):1228–1236CrossRefGoogle Scholar
  59. 59.
    Pillai RG, Beutelspacher SC, Larkin DF, George AJ (2008) Expression of the chemokine antagonist vMIP II using a non-viral vector can prolong corneal allograft survival. Transplantation 85(11):1640–1647PubMedCrossRefGoogle Scholar
  60. 60.
    Hajrasouliha AR, Funaki T, Sadrai Z, Hattori T, Chauhan SK, Dana R (2012) Vascular endothelial growth factor-C promotes alloimmunity by amplifying antigen-presenting cell maturation and lymphangiogenesis. Investig Ophthalmol Vis Sci 53(3):1244–1250CrossRefGoogle Scholar
  61. 61.
    Hua J, Stevenson W, Dohlman TH, Inomata T, Tahvildari M, Calcagno N, Pirmadjid N, Sadrai Z, Chauhan SK, Dana R (2016) Graft site microenvironment determines dendritic cell trafficking through the CCR7–CCL19/21 axis. Investig Ophthalmol Vis Sci 57(3):1457–1467CrossRefGoogle Scholar
  62. 62.
    Dohlman TH, Di Zazzo A, Omoto M, Hua J, Ding J, Hamrah P, Chauhan SK, Dana R (2016) E-selectin mediates immune cell trafficking in corneal transplantation. Transplantation 100(4):772–780PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Nibbs RJ, Kriehuber E, Ponath PD, Parent D, Qin S, Campbell JD, Henderson A, Kerjaschki D, Maurer D, Graham GJ, Rot A (2001) The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol 158(3):867–877PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hajrasouliha AR, Sadrai Z, Lee HK, Chauhan SK, Dana R (2013) Expression of the chemokine decoy receptor D6 mediates dendritic cell function and promotes corneal allograft rejection. Mol Vis 19:2517–2525PubMedPubMedCentralGoogle Scholar
  65. 65.
    Lapp T, Zaher SS, Haas CT, Becker DL, Thrasivoulou C, Chain BM, Larkin DF, Noursadeghi M (2015) Identification of therapeutic targets of inflammatory monocyte recruitment to modulate the allogeneic injury to donor cornea. Investig Ophthalmol Vis Sci 56(12):7250–7259CrossRefGoogle Scholar
  66. 66.
    Qian Y, Hamrah P, Boisgerault F, Yamagami S, Vora S, Benichou G, Dana MR (2002) Mechanisms of immunotherapeutic intervention by anti-CD154 (CD40L) antibody in high-risk corneal transplantation. J Interferon Cytokine Res 22(12):1217–1225PubMedCrossRefGoogle Scholar
  67. 67.
    Qian Y, Dana MR (2002) Effect of locally administered anti-CD154 (CD40 ligand) monoclonal antibody on survival of allogeneic corneal transplants. Cornea 21(6):592–597PubMedCrossRefGoogle Scholar
  68. 68.
    Hoffmann F, Zhang EP, Pohl T, Kunzendorf U, Wachtlin J, Bulfone-Paus S (1997) Inhibition of corneal allograft reaction by CTLA4-Ig. Graefes Arch Clin Exp Ophthalmol 235(8):535–540PubMedCrossRefGoogle Scholar
  69. 69.
    Comer RM, King WJ, Ardjomand N, Theoharis S, George AJ, Larkin DF (2002) Effect of administration of CTLA4-Ig as protein or cDNA on corneal allograft survival. Investig Ophthalmol Vis Sci 43(4):1095–1103Google Scholar
  70. 70.
    Kagaya F, Hori J, Kamiya K, Kaji Y, Oshika T, Amano S, Yamagami S, Tsuru T, Tanaka S, Matsuda H, Yagita H, Okumura K (2002) Inhibition of murine corneal allograft rejection by treatment with antibodies to CD80 and CD86. Exp Eye Res 74(1):131–139PubMedCrossRefGoogle Scholar
  71. 71.
    Watson MP, George AJ, Larkin DF (2006) Differential effects of costimulatory pathway modulation on corneal allograft survival. Investig Ophthalmol Vis Sci 47(8):3417–3422CrossRefGoogle Scholar
  72. 72.
    Kuchroo VK, Dardalhon V, Xiao S, Anderson AC (2008) New roles for TIM family members in immune regulation. Nat Rev Immunol 8(8):577–580PubMedCrossRefGoogle Scholar
  73. 73.
    Tan X, Jie Y, Zhang Y, Qin Y, Xu Q, Pan Z (2014) Tim-1 blockade with RMT1-10 increases T regulatory cells and prolongs the survival of high-risk corneal allografts in mice. Exp Eye Res 122:86–93PubMedCrossRefGoogle Scholar
  74. 74.
    Yamada J, Hamuro J, Terai K, Kinoshita S (2007) Major histocompatibility complex semi-matching improves murine corneal allograft survival under oxidative macrophage dominancy. Transplantation 84(7):899–907PubMedCrossRefGoogle Scholar
  75. 75.
    Hua J, Jin Y, Chen Y, Inomata T, Lee H, Chauhan SK, Petasis NA, Serhan CN, Dana R (2014) The resolvin D1 analogue controls maturation of dendritic cells and suppresses alloimmunity in corneal transplantation. Investig Ophthalmol Vis Sci 55(9):5944–5951CrossRefGoogle Scholar
  76. 76.
    Saban DR, Bock F, Chauhan SK, Masli S, Dana R (2010) Thrombospondin-1 derived from APCs regulates their capacity for allosensitization. J Immunol 185(8):4691–4697PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7(8):610–621PubMedCrossRefGoogle Scholar
  78. 78.
    Natarajan S, Thomson AW (2010) Tolerogenic dendritic cells and myeloid-derived suppressor cells: potential for regulation and therapy of liver auto- and alloimmunity. Immunobiology 215(9–10):698–703PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ezzelarab M, Thomson AW (2011) Tolerogenic dendritic cells and their role in transplantation. Semin Immunol 23(4):252–263PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Khan A, Fu H, Tan LA, Harper JE, Beutelspacher SC, Larkin DF, Lombardi G, McClure MO, George AJ (2013) Dendritic cell modification as a route to inhibiting corneal graft rejection by the indirect pathway of allorecognition. Eur J Immunol 43(3):734–746PubMedCrossRefGoogle Scholar
  81. 81.
    Boisgerault F, Liu Y, Anosova N, Ehrlich E, Dana MR, Benichou G (2001) Role of CD4+ and CD8+ T cells in allorecognition: lessons from corneal transplantation. J Immunol 167(4):1891–1899PubMedCrossRefGoogle Scholar
  82. 82.
    Yamada J, Kurimoto I, Streilein JW (1999) Role of CD4+ T cells in immunobiology of orthotopic corneal transplants in mice. Investig Ophthalmol Vis Sci 40(11):2614–2621Google Scholar
  83. 83.
    Chauhan SK, Jurkunas U, Funaki T, Dastjerdi M, Dana R (2015) Quantification of allospecific and nonspecific corneal endothelial cell damage after corneal transplantation. Eye (Lond) 29(1):136–144CrossRefGoogle Scholar
  84. 84.
    Hegde S, Beauregard C, Mayhew E, Niederkorn JY (2005) CD4(+) T-cell-mediated mechanisms of corneal allograft rejection: role of Fas-induced apoptosis. Transplantation 79(1):23–31PubMedCrossRefGoogle Scholar
  85. 85.
    Sano Y, Osawa H, Sotozono C, Kinoshita S (1998) Cytokine expression during orthotopic corneal allograft rejection in mice. Investig Ophthalmol Vis Sci 39(10):1953–1957Google Scholar
  86. 86.
    Ayliffe W, Alam Y, Bell EB, McLeod D, Hutchinson IV (1992) Prolongation of rat corneal graft survival by treatment with anti-CD4 monoclonal antibody. Br J Ophthalmol 76(10):602–606PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    He YG, Ross J, Niederkorn JY (1991) Promotion of murine orthotopic corneal allograft survival by systemic administration of anti-CD4 monoclonal antibody. Investig Ophthalmol Vis Sci 32(10):2723–2728Google Scholar
  88. 88.
    Yamada J, Hamuro J, Fukushima A, Ohteki T, Terai K, Iwakura Y, Yagita H, Kinoshita S (2009) MHC-matched corneal allograft rejection in an IFN-gamma/IL-17-independent manner in C57BL/6 mice. Investig Ophthalmol Vis Sci 50(5):2139–2146CrossRefGoogle Scholar
  89. 89.
    Hargrave SL, Hay C, Mellon J, Mayhew E, Niederkorn JY (2004) Fate of MHC-matched corneal allografts in Th1-deficient hosts. Investig Ophthalmol Vis Sci 45(4):1188–1193CrossRefGoogle Scholar
  90. 90.
    Niederkorn JY, Stevens C, Mellon J, Mayhew E (2006) Differential roles of CD8+ and CD8 T lymphocytes in corneal allograft rejection in ‘high-risk’ hosts. Am J Transplant 6(4):705–713PubMedCrossRefGoogle Scholar
  91. 91.
    Yamada J, Ksander BR, Streilein JW (2001) Cytotoxic T cells play no essential role in acute rejection of orthotopic corneal allografts in mice. Investig Ophthalmol Vis Sci 42(2):386–392Google Scholar
  92. 92.
    Cunnusamy K, Chen PW, Niederkorn JY (2010) IL-17 promotes immune privilege of corneal allografts. J Immunol 185(8):4651–4658PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yin XT, Zobell S, Jarosz JG, Stuart PM (2015) Anti-IL-17 therapy restricts and reverses late-term corneal allorejection. J Immunol 194(8):4029–4038PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cunnusamy K, Chen PW, Niederkorn JY (2011) IL-17A-dependent CD4+ CD25+ regulatory T cells promote immune privilege of corneal allografts. J Immunol 186(12):6737–6745PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zhu J, Liu Y, Pi Y, Jia L, Wang L, Huang Y (2014) Systemic application of sphingosine 1-phosphate receptor 1 immunomodulator inhibits corneal allograft rejection in mice. Acta Ophthalmol 92(1):e12–21PubMedCrossRefGoogle Scholar
  96. 96.
    Zhu J, Liu Y, Huang Y (2015) Topical application of sphingosine 1-phosphate receptor 1 prolongs corneal graft survival in mice. Mol Med Rep 11(5):3800–3807PubMedCrossRefGoogle Scholar
  97. 97.
    Roncarolo MG, Battaglia M (2007) Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol 7(8):585–598PubMedCrossRefGoogle Scholar
  98. 98.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787PubMedCrossRefGoogle Scholar
  99. 99.
    Ohkura N, Sakaguchi S (2011) Maturation of effector regulatory T cells. Nat Immunol 12(4):283–284PubMedCrossRefGoogle Scholar
  100. 100.
    Chauhan SK, Saban DR, Lee HK, Dana R (2009) Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. J Immunol 182(1):148–153PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hori J, Taniguchi H, Wang M, Oshima M, Azuma M (2010) GITR ligand-mediated local expansion of regulatory T cells and immune privilege of corneal allografts. Investig Ophthalmol Vis Sci 51(12):6556–6565CrossRefGoogle Scholar
  102. 102.
    Hildebrand A, Jarsch C, Kern Y, Bohringer D, Reinhard T, Schwartzkopff J (2014) Subconjunctivally applied naive Tregs support corneal graft survival in baby rats. Mol Vis 20:1749–1757PubMedPubMedCentralGoogle Scholar
  103. 103.
    Xu Q, Tan X, Zhang Y, Jie Y, Pan Z (2015) Subconjunctival injection of in vitro transforming growth factor-beta-induced regulatory T cells prolongs allogeneic corneal graft survival in mice. Int J Clin Exp Med 8(11):20271–20278PubMedPubMedCentralGoogle Scholar
  104. 104.
    Wang X, Wang W, Xu J, Le Q (2013) Effect of rapamycin and interleukin-2 on regulatory CD4+CD25+Foxp3+ T cells in mice after allogenic corneal transplantation. Transplant Proc 45(2):528–537PubMedCrossRefGoogle Scholar
  105. 105.
    Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6(11):1142–1151PubMedCrossRefGoogle Scholar
  106. 106.
    Barron L, Dooms H, Hoyer KK, Kuswanto W, Hofmann J, O’Gorman WE, Abbas AK (2010) Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol 185(11):6426–6430PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Tahvildari M, Omoto M, Chen Y, Emami-Naeini P, Inomata T, Dohlman TH, Kaye AE, Chauhan SK, Dana R (2016) In vivo expansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation. Transplantation 100(3):525–532PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Chauhan SK, Saban DR, Dohlman TH, Dana R (2014) CCL-21 conditioned regulatory T cells induce allotolerance through enhanced homing to lymphoid tissue. J Immunol 192(2):817–823PubMedCrossRefGoogle Scholar
  109. 109.
    Wang X, Wang W, Xu J, Wu S, Le Q (2015) All-trans retinoid acid promotes allogeneic corneal graft survival in mice by regulating Treg–Th17 balance in the presence of TGF-beta. BMC Immunol 16:17PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tan X, Zeng H, Jie Y, Zhang Y, Xu Q, Pan Z (2014) CD154 blockade modulates the ratio of Treg to Th1 cells and prolongs the survival of allogeneic corneal grafts in mice. Exp Ther Med 7(4):827–834PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16:111–135PubMedCrossRefGoogle Scholar
  112. 112.
    Choi HJ, Lee JJ, Kim DH, Kim MK, Lee HJ, Ko AY, Kang HJ, Park C, Wee WR (2015) Blockade of CD40–CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation. Am J Transplant 15(3):628–641PubMedCrossRefGoogle Scholar
  113. 113.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736PubMedCrossRefGoogle Scholar
  114. 114.
    Jia Z, Jiao C, Zhao S, Li X, Ren X, Zhang L, Han ZC, Zhang X (2012) Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res 102:44–49PubMedCrossRefGoogle Scholar
  115. 115.
    Oh JY, Lee RH, Yu JM, Ko JH, Lee HJ, Ko AY, Roddy GW, Prockop DJ (2012) Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response. Mol Ther 20(11):2143–2152PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Omoto M, Katikireddy KR, Rezazadeh A, Dohlman TH, Chauhan SK (2014) Mesenchymal stem cells home to inflamed ocular surface and suppress allosensitization in corneal transplantation. Investig Ophthalmol Vis Sci 55(10):6631–6638CrossRefGoogle Scholar
  117. 117.
    Murphy N, Lynch K, Lohan P, Treacy O, Ritter T (2016) Mesenchymal stem cell therapy to promote corneal allograft survival: current status and pathway to clinical translation. Curr Opin Organ Transplant 21(6):559–567PubMedCrossRefGoogle Scholar
  118. 118.
    Treacy O, O’Flynn L, Ryan AE, Morcos M, Lohan P, Schu S, Wilk M, Fahy G, Griffin MD, Nosov M, Ritter T (2014) Mesenchymal stem cell therapy promotes corneal allograft survival in rats by local and systemic immunomodulation. Am J Transplant 14(9):2023–2036PubMedCrossRefGoogle Scholar
  119. 119.
    Lapp T, Hildebrand A, Bohringer D, Betancor PK, Schlunck G, Reinhard T (2016) Optimizing rejection readouts in a corneal allograft transplantation model. Mol Vis 22:1248–1255PubMedPubMedCentralGoogle Scholar
  120. 120.
    Liu YC, Lwin NC, Chan NS, Mehta JS (2014) Use of anterior segment optical coherence tomography to predict corneal graft rejection in small animal models. Investig Ophthalmol Vis Sci 55(10):6736–6741CrossRefGoogle Scholar
  121. 121.
    Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173PubMedCrossRefGoogle Scholar
  122. 122.
    Yamada J, Streilein JW (1998) Fate of orthotopic corneal allografts in C57BL/6 mice. Transpl Immunol 6(3):161–168PubMedCrossRefGoogle Scholar
  123. 123.
    Shanks N, Greek R, Greek J (2009) Are animal models predictive for humans? Philos Ethics Humanit Med 4:2PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maryam Tahvildari
    • 1
    • 2
  • Afsaneh Amouzegar
    • 1
  • William Foulsham
    • 1
  • Reza Dana
    • 1
  1. 1.Schepens Eye Research Institute, Massachusetts Eye and Ear InfirmaryHarvard Medical SchoolBostonUSA
  2. 2.Kresge Eye InstituteWayne State UniversityDetroitUSA

Personalised recommendations