Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 8, pp 1363–1376 | Cite as

Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases

  • Yukino Chiba
  • Izuru Mizoguchi
  • Hideaki Hasegawa
  • Mio Ohashi
  • Naoko Orii
  • Taro Nagai
  • Miyaka Sugahara
  • Yasunori Miyamoto
  • Mingli Xu
  • Toshiyuki Owaki
  • Takayuki Yoshimoto
Review

Abstract

Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.

Keywords

Hematopoietic stem cell Hematopoietic progenitor cell Cytokine Emergency myelopoiesis 

Abbreviations

BM

Bone marrow

CAR

C-X-C motif ligand 12-abundant reticular

CTL

Cytotoxic CD8+ T cell

CXCL

C-X-C motif ligand

DC

Dendritic cell

EC

Endothelial cell

G-CSF

Granulocyte colony-stimulating factor

gp130

β-Receptor glycoprotein 130

GM-CSF

Granulocyte macrophage colony-stimulating factor

HSC

Hematopoietic stem cell

HSPC

Hematopoietic stem and progenitor cell

IFN

Interferon

IFNAR

IFN-α receptor

IL

Interleukin

JAK

Janus kinase

LCMV

Lymphocytic choriomeningitis virus

LSK

LineageSca-1+c-Kit+

LT-HSC

Long-term repopulating hematopoietic stem cell

M-CSF

Macrophage colony-stimulating factor

MDSC

Myeloid-derived suppressor cell

MPP

Multipotent progenitor

MYD88

Myeloid differentiation primary response gene 88

MyRP

Myeloid-restricted progenitor cell

MSC

Mesenchymal stem/stromal cell

NK

Natural killer

P.

Plasmodium

R

Receptor

RBC

Red blood cell

Sca-1

Stem cell antigen-1

SCF

Stem cell factor

STAT

Signal transducer and activator of transcription

Th

Helper T

TLR

Toll-like receptor

Treg

Regulatory T

Notes

Acknowledgements

This study was supported in part by a Grant-in-aid and the Private University Strategic Research Based Support Project from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

  1. 1.
    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644.  https://doi.org/10.1016/j.cell.2008.01.025 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13(1):102–116.  https://doi.org/10.1016/j.stem.2013.05.014 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci USA 108(50):20012–20017.  https://doi.org/10.1073/pnas.1116110108 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM, Morrison CG, Passegue E (2010) Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7(2):174–185.  https://doi.org/10.1016/j.stem.2010.06.014 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235.  https://doi.org/10.1038/nature11885 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462.  https://doi.org/10.1038/nature10783 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834.  https://doi.org/10.1038/nature09262 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Monteiro JP, Benjamin A, Costa ES, Barcinski MA, Bonomo A (2005) Normal hematopoiesis is maintained by activated bone marrow CD4+ T cells. Blood 105(4):1484–1491.  https://doi.org/10.1182/blood-2004-07-2856 PubMedCrossRefGoogle Scholar
  9. 9.
    Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158.  https://doi.org/10.1016/j.cell.2011.09.053 PubMedCrossRefGoogle Scholar
  10. 10.
    Takizawa H, Boettcher S, Manz MG (2012) Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119(13):2991–3002.  https://doi.org/10.1182/blood-2011-12-380113 PubMedCrossRefGoogle Scholar
  11. 11.
    Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T (2009) Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat Med 15(6):696–700.  https://doi.org/10.1038/nm.1973 PubMedCrossRefGoogle Scholar
  12. 12.
    Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458(7240):904–908.  https://doi.org/10.1038/nature07815 PubMedCrossRefGoogle Scholar
  13. 13.
    Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA (2010) Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 465(7299):793–797.  https://doi.org/10.1038/nature09135 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Boettcher S, Ziegler P, Schmid MA, Takizawa H, van Rooijen N, Kopf M, Heikenwalder M, Manz MG (2012) Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J Immunol 188(12):5824–5828.  https://doi.org/10.4049/jimmunol.1103253 PubMedCrossRefGoogle Scholar
  15. 15.
    Boettcher S, Manz MG (2016) Sensing and translation of pathogen signals into demand-adapted myelopoiesis. Curr Opin Hematol 23(1):5–10.  https://doi.org/10.1097/MOH.0000000000000201 PubMedCrossRefGoogle Scholar
  16. 16.
    Mirantes C, Passegue E, Pietras EM (2014) Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp Cell Res 329(2):248–254.  https://doi.org/10.1016/j.yexcr.2014.08.017 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Clapes T, Lefkopoulos S, Trompouki E (2016) Stress and non-stress roles of inflammatory signals during HSC emergence and maintenance. Front Immunol 7:487.  https://doi.org/10.3389/fimmu.2016.00487 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Boiko JR, Borghesi L (2012) Hematopoiesis sculpted by pathogens: toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine 57(1):1–8.  https://doi.org/10.1016/j.cyto.2011.10.005 PubMedCrossRefGoogle Scholar
  19. 19.
    Monlish DA, Bhatt ST, Schuettpelz LG (2016) The role of toll-like receptors in hematopoietic malignancies. Front Immunol 7:390.  https://doi.org/10.3389/fimmu.2016.00390 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Seita J, Asakawa M, Ooehara J, Takayanagi S, Morita Y, Watanabe N, Fujita K, Kudo M, Mizuguchi J, Ema H, Nakauchi H, Yoshimoto T (2008) Interleukin-27 directly induces differentiation in hematopoietic stem cells. Blood 111(4):1903–1912.  https://doi.org/10.1182/blood-2007-06-093328 PubMedCrossRefGoogle Scholar
  21. 21.
    Furusawa J, Mizoguchi I, Chiba Y, Hisada M, Kobayashi F, Yoshida H, Nakae S, Tsuchida A, Matsumoto T, Ema H, Mizuguchi J, Yoshimoto T (2016) Promotion of expansion and differentiation of hematopoietic stem cells by interleukin-27 into myeloid progenitors to control infection in emergency myelopoiesis. PLoS Pathog 12(3):e1005507.  https://doi.org/10.1371/journal.ppat.1005507 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147(927):258–267PubMedCrossRefGoogle Scholar
  23. 23.
    Binder D, Fehr J, Hengartner H, Zinkernagel RM (1997) Virus-induced transient bone marrow aplasia: major role of interferon-alpha/beta during acute infection with the noncytopathic lymphocytic choriomeningitis virus. J Exp Med 185(3):517–530PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648.  https://doi.org/10.1038/367645a0 PubMedCrossRefGoogle Scholar
  25. 25.
    Riether C, Schurch CM, Ochsenbein AF (2015) Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ 22(2):187–198.  https://doi.org/10.1038/cdd.2014.89 PubMedCrossRefGoogle Scholar
  26. 26.
    Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, Wagers AJ, Hsiao EC, Passegue E (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13(3):285–299.  https://doi.org/10.1016/j.stem.2013.06.009 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, Passegue E (2014) Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med 211(2):245–262.  https://doi.org/10.1084/jem.20131043 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, Wurzer S, Prendergast AM, Schnell A, Hexel K, Santarella-Mellwig R, Blaszkiewicz S, Kuck A, Geiger H, Milsom MD, Steinmetz LM, Schroeder T, Trumpp A, Krijgsveld J, Essers MA (2015) Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17(4):422–434.  https://doi.org/10.1016/j.stem.2015.07.007 PubMedCrossRefGoogle Scholar
  29. 29.
    Billiau A, Matthys P (2009) Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev 20(2):97–113.  https://doi.org/10.1016/j.cytogfr.2009.02.004 PubMedCrossRefGoogle Scholar
  30. 30.
    Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591.  https://doi.org/10.1146/annurev.immunol.15.1.563 PubMedCrossRefGoogle Scholar
  31. 31.
    Farrar MA, Schreiber RD (1993) The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 11:571–611.  https://doi.org/10.1146/annurev.iy.11.040193.003035 PubMedCrossRefGoogle Scholar
  32. 32.
    Maciejewski J, Selleri C, Anderson S, Young NS (1995) Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 85(11):3183–3190PubMedGoogle Scholar
  33. 33.
    Snoeck HW, Van Bockstaele DR, Nys G, Lenjou M, Lardon F, Haenen L, Rodrigus I, Peetermans ME, Berneman ZN (1994) Interferon gamma selectively inhibits very primitive CD342+ CD38− and not more mature CD34+ CD38+ human hematopoietic progenitor cells. J Exp Med 180(3):1177–1182PubMedCrossRefGoogle Scholar
  34. 34.
    Kawano Y, Takaue Y, Hirao A, Abe T, Saito S, Matsunaga K, Watanabe T, Hirose M, Ninomiya T, Kuroda Y et al (1991) Synergistic effect of recombinant interferon-gamma and interleukin-3 on the growth of immature human hematopoietic progenitors. Blood 77(10):2118–2121PubMedGoogle Scholar
  35. 35.
    Brugger W, Mocklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L (1993) Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Blood 81(10):2579–2584PubMedGoogle Scholar
  36. 36.
    de Bruin AM, Demirel O, Hooibrink B, Brandts CH, Nolte MA (2013) Interferon-gamma impairs proliferation of hematopoietic stem cells in mice. Blood 121(18):3578–3585.  https://doi.org/10.1182/blood-2012-05-432906 PubMedCrossRefGoogle Scholar
  37. 37.
    Belyaev NN, Biro J, Langhorne J, Potocnik AJ (2013) Extramedullary myelopoiesis in malaria depends on mobilization of myeloid-restricted progenitors by IFN-gamma induced chemokines. PLoS Pathog 9(6):e1003406.  https://doi.org/10.1371/journal.ppat.1003406 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Schurch CM, Riether C, Ochsenbein AF (2014) Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 14(4):460–472.  https://doi.org/10.1016/j.stem.2014.01.002 PubMedCrossRefGoogle Scholar
  39. 39.
    Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, Gazumyan A, Darasse-Jeze G, Telerman SB, Breton G, Schreiber HA, Frias-Staheli N, Billerbeck E, Dorner M, Rice CM, Ploss A, Klein F, Swiecki M, Colonna M, Kamphorst AO, Meredith M, Niec R, Takacs C, Mikhail F, Hari A, Bosque D, Eisenreich T, Merad M, Shi Y, Ginhoux F, Renia L, Urban BC, Nussenzweig MC (2013) Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med 19(6):730–738.  https://doi.org/10.1038/nm.3197 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zhao X, Ren G, Liang L, Ai PZ, Zheng B, Tischfield JA, Shi Y, Shao C (2010) Brief report: interferon-gamma induces expansion of Lin(−)Sca-1(+)C-Kit(+) Cells. Stem Cells 28(1):122–126.  https://doi.org/10.1002/stem.252 PubMedCrossRefGoogle Scholar
  41. 41.
    MacNamara KC, Jones M, Martin O, Winslow GM (2011) Transient activation of hematopoietic stem and progenitor cells by IFNgamma during acute bacterial infection. PLoS One 6(12):e28669.  https://doi.org/10.1371/journal.pone.0028669 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Umemoto T, Yamato M, Ishihara J, Shiratsuchi Y, Utsumi M, Morita Y, Tsukui H, Terasawa M, Shibata T, Nishida K, Kobayashi Y, Petrich BG, Nakauchi H, Eto K, Okano T (2012) Integrin-alphavbeta3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood 119(1):83–94.  https://doi.org/10.1182/blood-2011-02-335430 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Umemoto T, Matsuzaki Y, Shiratsuchi Y, Hashimoto M, Yoshimoto T, Nakamura-Ishizu A, Petrich B, Yamato M, Suda T (2017) Integrin alphavbeta3 enhances the suppressive effect of interferon-gamma on hematopoietic stem cells. EMBO J 36(16):2390–2403.  https://doi.org/10.15252/embj.201796771 PubMedCrossRefGoogle Scholar
  44. 44.
    Belyaev NN, Brown DE, Diaz AI, Rae A, Jarra W, Thompson J, Langhorne J, Potocnik AJ (2010) Induction of an IL7-R(+)c-Kit(hi) myelolymphoid progenitor critically dependent on IFN-gamma signaling during acute malaria. Nat Immunol 11(6):477–485.  https://doi.org/10.1038/ni.1869 PubMedCrossRefGoogle Scholar
  45. 45.
    Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA (2008) The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2(1):83–89.  https://doi.org/10.1016/j.stem.2007.10.007 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    King KY, Baldridge MT, Weksberg DC, Chambers SM, Lukov GL, Wu S, Boles NC, Jung SY, Qin J, Liu D, Songyang Z, Eissa NT, Taylor GA, Goodell MA (2011) Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood 118(6):1525–1533.  https://doi.org/10.1182/blood-2011-01-328682 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ishihara K, Hirano T (2002) IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 13(4–5):357–368PubMedCrossRefGoogle Scholar
  48. 48.
    Schaper F, Rose-John S (2015) Interleukin-6: biology, signaling and strategies of blockade. Cytokine Growth Factor Rev 26(5):475–487.  https://doi.org/10.1016/j.cytogfr.2015.07.004 PubMedCrossRefGoogle Scholar
  49. 49.
    Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813(5):878–888.  https://doi.org/10.1016/j.bbamcr.2011.01.034 PubMedCrossRefGoogle Scholar
  50. 50.
    Maeda K, Baba Y, Nagai Y, Miyazaki K, Malykhin A, Nakamura K, Kincade PW, Sakaguchi N, Coggeshall KM (2005) IL-6 blocks a discrete early step in lymphopoiesis. Blood 106(3):879–885.  https://doi.org/10.1182/blood-2005-02-0456 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M, Sala-Torra O, Radich JP, Passegue E (2011) IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20(5):661–673.  https://doi.org/10.1016/j.ccr.2011.10.012 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zhao JL, Ma C, O’Connell RM, Mehta A, DiLoreto R, Heath JR, Baltimore D (2014) Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 14(4):445–459.  https://doi.org/10.1016/j.stem.2014.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J, Hibbert L, Churakova T, Travis M, Vaisberg E, Blumenschein WM, Mattson JD, Wagner JL, To W, Zurawski S, McClanahan TK, Gorman DM, Bazan JF, de Waal Malefyt R, Rennick D, Kastelein RA (2002) IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4 + T cells. Immunity 16(6):779–790.  https://doi.org/10.1016/S1074-7613(02)00324-2 PubMedCrossRefGoogle Scholar
  54. 54.
    Hall AO, Silver JS, Hunter CA (2012) The Immunobiology of IL-27. Adv Immunol 115:1–44.  https://doi.org/10.1016/b978-0-12-394299-9.00001-1 PubMedCrossRefGoogle Scholar
  55. 55.
    Mizoguchi I, Higuchi K, Mitobe K, Tsunoda R, Mizuguchi J, Yoshimoto T (2013) Interleukin-27: regulation of immune responses and disease development by a pleiotropic cytokine with pro- and anti-inflammatory properties. In: Yoshimoto T, Yoshimoto T (eds) Cytokine frontiers: regulation of immune responses in health and disease. Springer, Tokyo, pp 353–375Google Scholar
  56. 56.
    Yoshida H, Hunter CA (2015) The immunobiology of interleukin-27. Annu Rev Immunol 33:417–443.  https://doi.org/10.1146/annurev-immunol-032414-112134 PubMedCrossRefGoogle Scholar
  57. 57.
    Morishima N, Owaki T, Asakawa M, Kamiya S, Mizuguchi J, Yoshimoto T (2005) Augmentation of effector CD8+ T cell generation with enhanced granzyme B expression by IL-27. J Immunol 175(3):1686–1693PubMedCrossRefGoogle Scholar
  58. 58.
    Schneider R, Yaneva T, Beauseigle D, El-Khoury L, Arbour N (2011) IL-27 increases the proliferation and effector functions of human naive CD8+ T lymphocytes and promotes their development into Tc1 cells. Eur J Immunol 41(1):47–59.  https://doi.org/10.1002/eji.201040804 PubMedCrossRefGoogle Scholar
  59. 59.
    Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, Kuchroo VK, Oukka M, Weiner HL (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12):1380–1389.  https://doi.org/10.1038/ni1541 PubMedCrossRefGoogle Scholar
  60. 60.
    Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, Yu S, Saris CJ, Gran B, Ciric B, Rostami A (2007) Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 8(12):1372–1379PubMedCrossRefGoogle Scholar
  61. 61.
    Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, Turka LA, Ernst M, Saris CJ, O’Shea JJ, Hunter CA (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8(12):1363–1371PubMedCrossRefGoogle Scholar
  62. 62.
    Do J, Kim D, Kim S, Valentin-Torres A, Dvorina N, Jang E, Nagarajavel V, DeSilva TM, Li X, Ting AH, Vignali DAA, Stohlman SA, Baldwin WM 3rd, Min B (2017) Treg-specific IL-27Ralpha deletion uncovers a key role for IL-27 in Treg function to control autoimmunity. Proc Natl Acad Sci USA 114(38):10190–10195.  https://doi.org/10.1073/pnas.1703100114 PubMedCrossRefGoogle Scholar
  63. 63.
    Yoshimoto T, Yoneto T, Waki S, Nariuchi H (1998) Interleukin-12-dependent mechanisms in the clearance of blood-stage murine malaria parasite Plasmodium berghei XAT, an attenuated variant of P. berghei NK65. J Infect Dis 177(6):1674–1681PubMedCrossRefGoogle Scholar
  64. 64.
    Yoneto T, Waki S, Takai T, Tagawa Y, Iwakura Y, Mizuguchi J, Nariuchi H, Yoshimoto T (2001) A critical role of Fc receptor-mediated antibody-dependent phagocytosis in the host resistance to blood-stage Plasmodium berghei XAT infection. J Immunol 166(10):6236–6241PubMedCrossRefGoogle Scholar
  65. 65.
    Hisada M, Kamiya S, Fujita K, Belladonna ML, Aoki T, Koyanagi Y, Mizuguchi J, Yoshimoto T (2004) Potent antitumor activity of interleukin-27. Cancer Res 64(3):1152–1156.  https://doi.org/10.1158/0008-5472.CAN-03-2084 PubMedCrossRefGoogle Scholar
  66. 66.
    Yoshimoto T, Chiba Y, Furusawa JI, Xu M, Tsunoda R, Higuchi K, Mizoguchi I (2015) Potential clinical application of interleukin-27 as an antitumor agent. Cancer Sci.  https://doi.org/10.1111/cas.12731 PubMedPubMedCentralGoogle Scholar
  67. 67.
    Mizoguchi I, Chiba Y, Furusawa JI, Xu M, Tsunoda R, Higuchi K, Yoshimoto T (2015) Therapeutic potential of interleukin-27 against cancers in preclinical mouse models. Oncoimmunology 4(10):e1042200.  https://doi.org/10.1080/2162402X.2015.1042200 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Chiba Y, Mizoguchi I, Furusawa J, Hasegawa H, Ohashi M, Xu M, Owaki T, Yoshimoto T (2017) Interleukin-27 exerts its antitumor effects by promoting differentiation of hematopoietic stem cells to M1 macrophages. Cancer Res.  https://doi.org/10.1158/0008-5472.CAN-17-0960 Google Scholar
  69. 69.
    Shimizu M, Shimamura M, Owaki T, Asakawa M, Fujita K, Kudo M, Iwakura Y, Takeda Y, Luster AD, Mizuguchi J, Yoshimoto T (2006) Antiangiogenic and antitumor activities of IL-27. J Immunol 176(12):7317–7324PubMedCrossRefGoogle Scholar
  70. 70.
    Yoshimoto T, Morishima N, Mizoguchi I, Shimizu M, Nagai H, Oniki S, Oka M, Nishigori C, Mizuguchi J (2008) Antiproliferative activity of IL-27 on melanoma. J Immunol 180(10):6527–6535PubMedCrossRefGoogle Scholar
  71. 71.
    Tormo AJ, Beaupre LA, Elson G, Crabe S, Gauchat JF (2013) A polyglutamic acid motif confers IL-27 hydroxyapatite and bone-binding properties. J Immunol 190(6):2931–2937.  https://doi.org/10.4049/jimmunol.1201460 PubMedCrossRefGoogle Scholar
  72. 72.
    Larousserie F, Bsiri L, Dumaine V, Dietrich C, Audebourg A, Radenen-Bussiere B, Anract P, Vacher-Lavenu MC, Devergne O (2017) Frontline science: human bone cells as a source of IL-27 under inflammatory conditions: role of TLRs and cytokines. J Leukoc Biol 101(6):1289–1300.  https://doi.org/10.1189/jlb.3HI0616-280R PubMedCrossRefGoogle Scholar
  73. 73.
    Bronchud MH, Scarffe JH, Thatcher N, Crowther D, Souza LM, Alton NK, Testa NG, Dexter TM (1987) Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer 56(6):809–813PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gabrilove JL, Jakubowski A, Scher H, Sternberg C, Wong G, Grous J, Yagoda A, Fain K, Moore MA, Clarkson B et al (1988) Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N Engl J Med 318(22):1414–1422.  https://doi.org/10.1056/NEJM198806023182202 PubMedCrossRefGoogle Scholar
  75. 75.
    Tamura M, Hattori K, Nomura H, Oheda M, Kubota N, Imazeki I, Ono M, Ueyama Y, Nagata S, Shirafuji N et al (1987) Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem Biophys Res Commun 142(2):454–460PubMedCrossRefGoogle Scholar
  76. 76.
    Duhrsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D (1988) Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72(6):2074–2081PubMedGoogle Scholar
  77. 77.
    Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78(11):2791–2808PubMedGoogle Scholar
  78. 78.
    Cebon J, Layton JE, Maher D, Morstyn G (1994) Endogenous haemopoietic growth factors in neutropenia and infection. Br J Haematol 86(2):265–274PubMedCrossRefGoogle Scholar
  79. 79.
    Kawakami M, Tsutsumi H, Kumakawa T, Abe H, Hirai M, Kurosawa S, Mori M, Fukushima M (1990) Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76(10):1962–1964PubMedGoogle Scholar
  80. 80.
    Sano E, Ohashi K, Sato Y, Kashiwagi M, Joguchi A, Naruse N (2007) A possible role of autogenous IFN-beta for cytokine productions in human fibroblasts. J Cell Biochem 100(6):1459–1476.  https://doi.org/10.1002/jcb.21128 PubMedCrossRefGoogle Scholar
  81. 81.
    Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, Blanchard D, Gaillard C, Das Mahapatra B, Rouvier E, Golstein P, Banchereau J, Lebecque S (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183(6):2593–2603PubMedCrossRefGoogle Scholar
  82. 82.
    Liu F, Poursine-Laurent J, Link DC (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95(10):3025–3031PubMedGoogle Scholar
  83. 83.
    Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111(2):187–196.  https://doi.org/10.1172/JCI15994 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pelus LM, Bian H, King AG, Fukuda S (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 103(1):110–119.  https://doi.org/10.1182/blood-2003-04-1115 PubMedCrossRefGoogle Scholar
  85. 85.
    Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421.  https://doi.org/10.1016/j.cell.2005.10.041 PubMedCrossRefGoogle Scholar
  86. 86.
    Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, Frenette PS (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271.  https://doi.org/10.1084/jem.20101688 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Levesque JP, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106(9):3020–3027.  https://doi.org/10.1182/blood-2004-01-0272 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84(6):1737–1746PubMedGoogle Scholar
  89. 89.
    Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC (1996) Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5(5):491–501PubMedCrossRefGoogle Scholar
  90. 90.
    Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR, Cutler CS, Westervelt P, Woolfrey A, Couban S, Ehninger G, Johnston L, Maziarz RT, Pulsipher MA, Porter DL, Mineishi S, McCarty JM, Khan SP, Anderlini P, Bensinger WI, Leitman SF, Rowley SD, Bredeson C, Carter SL, Horowitz MM, Confer DL, Blood Marrow Transplant, Clinical Trials N (2012) Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med 367(16):1487–1496.  https://doi.org/10.1056/NEJMoa1203517 PubMedCrossRefGoogle Scholar
  91. 91.
    Bernitz JM, Daniel MG, Fstkchyan YS, Moore K (2017) Granulocyte colony-stimulating factor mobilizes dormant hematopoietic stem cells without proliferation in mice. Blood 129(14):1901–1912.  https://doi.org/10.1182/blood-2016-11-752923 PubMedCrossRefGoogle Scholar
  92. 92.
    Boettcher S, Gerosa RC, Radpour R, Bauer J, Ampenberger F, Heikenwalder M, Kopf M, Manz MG (2014) Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124(9):1393–1403.  https://doi.org/10.1182/blood-2014-04-570762 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ushach I, Zlotnik A (2016) Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 100(3):481–489.  https://doi.org/10.1189/jlb.3RU0316-144R PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Jones CV, Ricardo SD (2013) Macrophages and CSF-1: implications for development and beyond. Organogenesis 9(4):249–260.  https://doi.org/10.4161/org.25676 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99(1):111–120PubMedCrossRefGoogle Scholar
  96. 96.
    Sarrazin S, Mossadegh-Keller N, Fukao T, Aziz A, Mourcin F, Vanhille L, Kelly Modis L, Kastner P, Chan S, Duprez E, Otto C, Sieweke MH (2009) MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138(2):300–313.  https://doi.org/10.1016/j.cell.2009.04.057 PubMedCrossRefGoogle Scholar
  97. 97.
    Till JE, McCulloch EA, Siminovitch L (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51:29–36PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt SL, Moore J, Sieweke MH (2013) M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497(7448):239–243.  https://doi.org/10.1038/nature12026 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kandalla PK, Sarrazin S, Molawi K, Berruyer C, Redelberger D, Favel A, Bordi C, de Bentzmann S, Sieweke MH (2016) M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation. J Exp Med 213(11):2269–2279.  https://doi.org/10.1084/jem.20151975 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Dinarello CA, van der Meer JW (2013) Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 25(6):469–484.  https://doi.org/10.1016/j.smim.2013.10.008 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cullinan EB, Kwee L, Nunes P, Shuster DJ, Ju G, McIntyre KW, Chizzonite RA, Labow MA (1998) IL-1 receptor accessory protein is an essential component of the IL-1 receptor. J Immunol 161(10):5614–5620PubMedGoogle Scholar
  102. 102.
    Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11(8):633–652.  https://doi.org/10.1038/nrd3800 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hestdal K, Ruscetti FW, Chizzonite R, Ortiz M, Gooya JM, Longo DL, Keller JR (1994) Interleukin-1 (IL-1) directly and indirectly promotes hematopoietic cell growth through type I IL-1 receptor. Blood 84(1):125–132PubMedGoogle Scholar
  104. 104.
    Morrissey P, Charrier K, Bressler L, Alpert A (1988) The influence of IL-1 treatment on the reconstitution of the hemopoietic and immune systems after sublethal radiation. J Immunol 140(12):4204–4210PubMedGoogle Scholar
  105. 105.
    Damia G, Komschlies KL, Futami H, Back T, Gruys ME, Longo DL, Keller JR, Ruscetti FW, Wiltrout RH (1992) Prevention of acute chemotherapy-induced death in mice by recombinant human interleukin 1: protection from hematological and nonhematological toxicities. Cancer Res 52(15):4082–4089PubMedGoogle Scholar
  106. 106.
    Smith MA, Knight SM, Maddison PJ, Smith JG (1992) Anaemia of chronic disease in rheumatoid arthritis: effect of the blunted response to erythropoietin and of interleukin 1 production by marrow macrophages. Ann Rheum Dis 51(6):753–757PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Dinarello CA (2005) Blocking IL-1 in systemic inflammation. J Exp Med 201(9):1355–1359.  https://doi.org/10.1084/jem.20050640 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Cain D, Kondo M, Chen H, Kelsoe G (2009) Effects of acute and chronic inflammation on B-cell development and differentiation. J Invest Dermatol 129(2):266–277.  https://doi.org/10.1038/jid.2008.286 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, Lakshminarasimhan R, Chin CP, Techner JM, Will B, Nerlov C, Steidl U, Manz MG, Schroeder T, Passegue E (2016) Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol 18(6):607–618.  https://doi.org/10.1038/ncb3346 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Jovcic G, Ivanovic Z, Biljanovic-Paunovic L, Bugarski D, Stosic-Grujicic S, Milenkovic P (1996) The effect of IL-1 receptor antagonist on the proliferation of hematopoietic progenitor cells in regenerating bone marrow. Leukemia 10(3):564–569PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Yukino Chiba
    • 1
  • Izuru Mizoguchi
    • 1
  • Hideaki Hasegawa
    • 1
  • Mio Ohashi
    • 1
  • Naoko Orii
    • 1
  • Taro Nagai
    • 2
  • Miyaka Sugahara
    • 1
    • 3
  • Yasunori Miyamoto
    • 3
  • Mingli Xu
    • 1
  • Toshiyuki Owaki
    • 1
  • Takayuki Yoshimoto
    • 1
  1. 1.Department of ImmunoregulationInstitute of Medical Science, Tokyo Medical UniversityTokyoJapan
  2. 2.Department of ImmunologyTokyo Medical UniversityTokyoJapan
  3. 3.Institute for Human Life Innovation, Ochanomizu UniversityTokyoJapan

Personalised recommendations