Cellular and Molecular Life Sciences

, Volume 75, Issue 6, pp 1001–1012 | Cite as

Do anti-stroma therapies improve extrinsic resistance to increase the efficacy of gemcitabine in pancreatic cancer?

  • Chen Liang
  • Si Shi
  • Qingcai Meng
  • Dingkong Liang
  • Shunrong Ji
  • Bo Zhang
  • Yi Qin
  • Jin Xu
  • Quanxing Ni
  • Xianjun Yu


Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies, with approximately 20–30% of PDAC patients receiving the surgical resection with curative intent. Although many studies have focused on finding ideal “drug chaperones” that facilitate and/or potentiate the effects of gemcitabine (GEM) in pancreatic cancer, a significant benefit in overall survival could not be demonstrated for any of these combination therapies in PDAC. Given that pancreatic cancer is characterized by desmoplasia and the dual biological roles of stroma in pancreatic cancer, we reassess the importance of stroma in GEM-based therapeutic approaches in light of current findings. This review is focused on understanding the role of stromal components in the extrinsic resistance to GEM and whether anti-stroma therapies have a positive effect on the GEM delivery. This work contributes to the development of novel and promising combination GEM-based regimens that have achieved significant survival benefits for the patients with pancreatic cancer.


Pancreatic cancer Gemcitabine Stroma Drug delivery Hyaluronan Nab-paclitaxel 



This study was jointly funded by the National Science Foundation for Distinguished Young Scholars of China (No. 81625016), the National Natural Science Foundation of China (No. 81372651, 81502031) and the Shanghai Sailing Program (No. 17YF1402500).


  1. 1.
    Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A et al (2016) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 30:355–385CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stathis A, Moore MJ (2010) Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 7:163–172CrossRefPubMedGoogle Scholar
  3. 3.
    Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039–1049CrossRefPubMedGoogle Scholar
  4. 4.
    Sun C, Ansari D, Andersson R, Wu DQ (2012) Does gemcitabine-based combination therapy improve the prognosis of unresectable pancreatic cancer? World J Gastroenterol 18:4944–4958CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Andersson R, Aho U, Nilsson BI, Peters GJ, Pastor-Anglada M, Rasch W et al (2009) Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. Scand J Gastroenterol 44:782–786CrossRefPubMedGoogle Scholar
  6. 6.
    Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29:4548–4554CrossRefGoogle Scholar
  7. 7.
    Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W et al (2016) Metabolic plasticity in heterogeneous pancreatic ductal adenocarcinoma. Biochim Biophys Acta 1866:177–188PubMedGoogle Scholar
  8. 8.
    Mahadevan D, Von Hoff DD (2007) Tumor–stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6:1186–1197CrossRefPubMedGoogle Scholar
  9. 9.
    Chu GC, Kimmelman AC, Hezel AF, DePinho RA (2007) Stromal biology of pancreatic cancer. J Cell Biochem 101:887–907CrossRefPubMedGoogle Scholar
  10. 10.
    Korc M (2007) Pancreatic cancer-associated stroma production. Am J Surg 194:S84–S86CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68:918–926CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bachem MG, Schunemann M, Ramadani M, Siech M, Beger H, Buck A et al (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128:907–921CrossRefPubMedGoogle Scholar
  13. 13.
    Schneiderhan W, Diaz F, Fundelvzv M, Zhou S, Siech M, Hasel C et al (2007) Pancreatic stellate cells are an important source of MMP in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay. J Cell Sci 120:512–519CrossRefPubMedGoogle Scholar
  14. 14.
    Jones L, Ghaneh P, Humphreys M, Neoptolemos JP (1999) The matrix metalloproteinases and their inhibitors in the treatment of pancreatic cancer. Ann N Y Acad Sci 880:288–307CrossRefPubMedGoogle Scholar
  15. 15.
    Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA et al (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43:128–133CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ide T, Kitajima Y, Miyoshi A, Ohtsuka T, Mitsuno M, Ohtaka K et al (2006) Tumor–stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer 119:2750–2759CrossRefPubMedGoogle Scholar
  17. 17.
    Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA et al (2011) Stromal biology and therapy in pancreatic cancer. Gut 60:861–868CrossRefPubMedGoogle Scholar
  18. 18.
    Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I et al (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16:1264–1284CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Laklai H, Miroshnikova YA, Pickup MW, Collisson EA, Kim GE, Barrett AS et al (2016) Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med 22:497–505CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851–856CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bhardwaj A, Srivastava SK, Singh S, Tyagi N, Arora S, Carter JE et al (2016) MYB promotes desmoplasia in pancreatic cancer through direct transcriptional up-regulation and cooperative action of sonic hedgehog and adrenomedullin. J Biol Chem 291:16263–16270CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T et al (2008) Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 14:5995–6004CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J et al (2012) The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol. 9:454–467CrossRefPubMedGoogle Scholar
  24. 24.
    Stoker MG, Shearer M, O’Neill C (1966) Growth inhibition of polyoma-transformed cells by contact with static normal fibroblasts. J Cell Sci 1:297–310PubMedGoogle Scholar
  25. 25.
    Klein G (2014) Evolutionary aspects of cancer resistance. Semin Cancer Biol 25:10–14CrossRefPubMedGoogle Scholar
  26. 26.
    Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ikenaga N, Ohuchida K, Mizumoto K, Cui L, Kayashima T, Morimatsu K et al (2010) CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer. Gastroenterology 139:1041–1051 (1051 e1041–1048) CrossRefPubMedGoogle Scholar
  29. 29.
    Lonardo E, Frias-Aldeguer J, Hermann PC, Heeschen C (2012) Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle 11:1282–1290CrossRefPubMedGoogle Scholar
  30. 30.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  31. 31.
    Erkan M, Reiser-Erkan C, Michalski CW, Kleeff J (2010) Tumor microenvironment and progression of pancreatic cancer. Exp Oncol 32:128–131PubMedGoogle Scholar
  32. 32.
    Luo G, Long J, Zhang B, Liu C, Xu J, Ni Q et al (2012) Stroma and pancreatic ductal adenocarcinoma: an interaction loop. Biochim Biophys Acta 1826:170–178PubMedGoogle Scholar
  33. 33.
    Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Engels B, Rowley DA, Schreiber H (2012) Targeting stroma to treat cancers. Semin Cancer Biol 22:41–49CrossRefPubMedGoogle Scholar
  35. 35.
    Bramhall SR, Rosemurgy A, Brown PD, Bowry C, Buckels JA, Marimastat Pancreatic Cancer Study G (2001) Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol 19:3447–3455CrossRefPubMedGoogle Scholar
  36. 36.
    Moore MJ, Hamm J, Dancey J, Eisenberg PD, Dagenais M, Fields A et al (2003) Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 21:3296–3302CrossRefPubMedGoogle Scholar
  37. 37.
    Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–747CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gore J, Korc M (2014) Pancreatic cancer stroma: friend or foe? Cancer Cell 25:711–712CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dangi-Garimella S, Krantz SB, Barron MR, Shields MA, Heiferman MJ, Grippo PJ et al (2011) Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res 71:1019–1028CrossRefPubMedGoogle Scholar
  40. 40.
    Dangi-Garimella S, Sahai V, Ebine K, Kumar K, Munshi HG (2013) Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression. PLoS One 8:e64566CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kozono S, Ohuchida K, Eguchi D, Ikenaga N, Fujiwara K, Cui L et al (2013) Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res 73:2345–2356CrossRefPubMedGoogle Scholar
  42. 42.
    Binenbaum Y, Na’ara S, Gil Z (2015) Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updates 23:55–68CrossRefGoogle Scholar
  43. 43.
    Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N, Frese KK et al (2013) Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62:112–120CrossRefPubMedGoogle Scholar
  44. 44.
    Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Koay EJ, Truty MJ, Cristini V, Thomas RM, Chen R, Chatterjee D et al (2014) Transport properties of pancreatic cancer describe gemcitabine delivery and response. J Clin Invest 124:1525–1536CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tannock IF, Lee CM, Tunggal JK, Cowan DS, Egorin MJ (2002) Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res 8:878–884PubMedGoogle Scholar
  47. 47.
    Pries AR, Hopfner M, le Noble F, Dewhirst MW, Secomb TW (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10:587–593CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Farrell JJ, Elsaleh H, Garcia M, Lai R, Ammar A, Regine WF et al (2009) Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology 136:187–195CrossRefPubMedGoogle Scholar
  49. 49.
    Nagathihalli NS, Castellanos JA, Shi C, Beesetty Y, Reyzer ML, Caprioli R et al (2015) Signal transducer and activator of transcription 3, mediated remodeling of the tumor microenvironment results in enhanced tumor drug delivery in a mouse model of pancreatic cancer. Gastroenterology 149(1932–1943):e1939Google Scholar
  50. 50.
    Hessmann E, Patzak MS, Klein L, Chen N, Kari V, Ramu I et al (2017) Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut. doi: 10.1136/gutjnl-2016-311954 Google Scholar
  51. 51.
    Bonomi A, Sordi V, Dugnani E, Ceserani V, Dossena M, Cocce V et al (2015) Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells. Cytotherapy 17:1687–1695CrossRefPubMedGoogle Scholar
  52. 52.
    Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP et al (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455:406–410CrossRefPubMedGoogle Scholar
  53. 53.
    Anonymous (January 27, 2012) Press release: Infinity reports update from phase 2 study of saridegib plus gemcitabine in patients with metastatic pancreatic cancer. Available at: Accessed 2 July 2014
  54. 54.
    Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S et al (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci USA 111:E3091–E3100CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Catenacci DV, Junttila MR, Karrison T, Bahary N, Horiba MN, Nattam SR et al (2015) Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a Hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J Clin Oncol 33:4284–4292CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    De Jesus-Acosta A, O’Dwyer PJ, Ramanathan RK, Von Hoff DD, Maitra A, Rasheed Z et al (2014) A phase II study of vismodegib, a hedgehog (Hh) pathway inhibitor, combined with GEM and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA). J Clin Oncol 32(Suppl 3;abstr 257)Google Scholar
  57. 57.
    Le Calve B, Griveau A, Vindrieux D, Marechal R, Wiel C, Svrcek M et al (2016) Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution. Oncotarget 7:32100–32112CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Miller BW, Morton JP, Pinese M, Saturno G, Jamieson NB, McGhee E et al (2015) Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol Med 7:1063–1076CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Miao L, Liu Q, Lin CM, Luo C, Wang Y, Liu L et al (2017) Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res 77:719–731CrossRefPubMedGoogle Scholar
  60. 60.
    Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–734CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bapiro TE, Richards FM, Goldgraben MA, Olive KP, Madhu B, Frese KK et al (2011) A novel method for quantification of gemcitabine and its metabolites 2′,2′-difluorodeoxyuridine and gemcitabine triphosphate in tumour tissue by LC-MS/MS: comparison with (19)F NMR spectroscopy. Cancer Chemother Pharmacol 68:1243–1253CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA, Pshevlotsky EM et al (2016) Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res 22:2848–2854CrossRefPubMedGoogle Scholar
  63. 63.
    Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703CrossRefGoogle Scholar
  64. 64.
    Heinemann V, Reni M, Ychou M, Richel DJ, Macarulla T, Ducreux M (2014) Tumour-stroma interactions in pancreatic ductal adenocarcinoma: rationale and current evidence for new therapeutic strategies. Cancer Treat Rev 40:118–128CrossRefPubMedGoogle Scholar
  65. 65.
    Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C et al (2013) Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer 109:926–933CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Frese KK, Neesse A, Cook N, Bapiro TE, Lolkema MP, Jodrell DI et al (2012) Nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov 2:260–269CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kim H, Samuel S, Lopez-Casas P, Grizzle W, Hidalgo M, Kovar J et al (2016) SPARC-Independent delivery of nab-paclitaxel without depleting tumor stroma in patient-derived pancreatic cancer xenografts. Mol Cancer Ther 15:680–688CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Neesse A, Frese KK, Chan DS, Bapiro TE, Howat WJ, Richards FM et al (2014) SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut 63:974–983CrossRefPubMedGoogle Scholar
  69. 69.
    Nagaraju GP, Dontula R, El-Rayes BF, Lakka SS (2014) Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis 35:967–973CrossRefPubMedGoogle Scholar
  70. 70.
    Kiessling F, Fink C, Hansen M, Bock M, Sinn H, Schrenk HH et al (2002) Magnetic resonance imaging of nude mice with heterotransplanted high-grade squamous cell carcinomas: use of a low-loaded, covalently bound Gd-Hsa conjugate as contrast agent with high tumor affinity. Invest Radiol 37:193–198CrossRefPubMedGoogle Scholar
  71. 71.
    Schnitzer JE, Oh P (1992) Antibodies to SPARC inhibit albumin binding to SPARC, gp60, and microvascular endothelium. Am J Physiol 263:H1872–H1879PubMedGoogle Scholar
  72. 72.
    Desai N, Trieu V, Damascelli B, Soon-Shiong P (2009) SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl Oncol 2:59–64CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324CrossRefPubMedGoogle Scholar
  74. 74.
    Hidalgo M, Plaza C, Musteanu M, Illei P, Brachmann CB, Heise C et al (2015) SPARC expression did not predict efficacy of nab-paclitaxel plus gemcitabine or gemcitabine alone for metastatic pancreatic cancer in an exploratory analysis of the phase III MPACT Trial. Clin Cancer Res 21:4811–4818CrossRefPubMedGoogle Scholar
  75. 75.
    Ormanns S, Haas M, Baechmann S, Altendorf-Hofmann A, Remold A, Quietzsch D et al (2016) Impact of SPARC expression on outcome in patients with advanced pancreatic cancer not receiving nab-paclitaxel: a pooled analysis from prospective clinical and translational trials. Br J Cancer 115:1520–1529CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Mantoni TS, Schendel RR, Rodel F, Niedobitek G, Al-Assar O, Masamune A et al (2008) Stromal SPARC expression and patient survival after chemoradiation for non-resectable pancreatic adenocarcinoma. Cancer Biol Ther 7:1806–1815CrossRefPubMedGoogle Scholar
  77. 77.
    Gundewar C, Sasor A, Hilmersson KS, Andersson R, Ansari D (2015) The role of SPARC expression in pancreatic cancer progression and patient survival. Scand J Gastroenterol 50:1170–1174CrossRefPubMedGoogle Scholar
  78. 78.
    Mao Z, Ma X, Fan X, Cui L, Zhu T, Qu J et al (2014) Secreted protein acidic and rich in cysteine inhibits the growth of human pancreatic cancer cells with G1 arrest induction. Tumour Biol 35:10185–10193CrossRefPubMedGoogle Scholar
  79. 79.
    Sinn M, Sinn BV, Striefler JK, Lindner JL, Stieler JM, Lohneis P et al (2014) SPARC expression in resected pancreatic cancer patients treated with gemcitabine: results from the CONKO-001 study. Ann Oncol 25:1025–1032CrossRefPubMedGoogle Scholar
  80. 80.
    Infante JR, Matsubayashi H, Sato N, Tonascia J, Klein AP, Riall TA et al (2007) Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 25:319–325CrossRefPubMedGoogle Scholar
  81. 81.
    Miyoshi K, Sato N, Ohuchida K, Mizumoto K, Tanaka M (2010) SPARC mRNA expression as a prognostic marker for pancreatic adenocarcinoma patients. Anticancer Res 30:867–871PubMedGoogle Scholar
  82. 82.
    Heeg S, Das KK, Reichert M, Bakir B, Takano S, Caspers J et al (2016) ETS-transcription factor ETV1 regulates stromal expansion and metastasis in pancreatic cancer. Gastroenterology 151(540–553):e514Google Scholar
  83. 83.
    Fan X, Mao Z, Ma X, Cui L, Qu J, Lv L et al (2016) Secreted protein acidic and rich in cysteine enhances the chemosensitivity of pancreatic cancer cells to gemcitabine. Tumour Biol 37:2267–2273CrossRefPubMedGoogle Scholar
  84. 84.
    Guweidhi A, Kleeff J, Adwan H, Giese NA, Wente MN, Giese T et al (2005) Osteonectin influences growth and invasion of pancreatic cancer cells. Ann Surg 242:224–234CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Pancreatic and Hepatobiliary SurgeryFudan University Shanghai Cancer CenterShanghaiPeople’s Republic of China
  2. 2.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPeople’s Republic of China
  3. 3.Pancreatic Cancer InstituteFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations