Cellular and Molecular Life Sciences

, Volume 74, Issue 23, pp 4329–4337 | Cite as

Periostin in vitreoretinal diseases

  • Shigeo Yoshida
  • Takahito Nakama
  • Keijiro Ishikawa
  • Shintaro Nakao
  • Koh-hei Sonoda
  • Tatsuro Ishibashi
Multi-author review


Proliferative vitreoretinal diseases such as diabetic retinopathy, proliferative vitreoretinopathy (PVR), and age-related macular degeneration are a leading cause of decreased vision and blindness in developed countries. In these diseases, retinal fibro(vascular) membrane (FVM) formation above and beneath the retina plays an important role. Gene expression profiling of human FVMs revealed significant upregulation of periostin. Subsequent analyses demonstrated increased periostin expression in the vitreous of patients with both proliferative diabetic retinopathy and PVR. Immunohistochemical analysis showed co-localization of periostin with α-SMA and M2 macrophage markers in FVMs. In vitro, periostin blockade inhibited migration and adhesion induced by PVR vitreous and transforming growth factor-β2 (TGF-β2). In vivo, a novel single-stranded RNAi agent targeting periostin showed the inhibitory effect on experimental retinal and choroidal FVM formation without affecting the viability of retinal cells. These results indicated that periostin is a pivotal molecule for FVM formation and a promising therapeutic target for these proliferative vitreoretinal diseases.


Vitreoretinal disease Genome-wide gene expression profiling Proliferative diabetic retinopathy Proliferative vitreoretinopathy Age-related macular degeneration Fibrovascular membranes Epiretinal membranes Neovascularization Fibrosis Retina Choroid Mouse model of oxygen-induced retinal neovascularization Mouse model of laser-induced choroidal neovascuarization Single-stranded RNA interference 



We thank Drs. Kinuko Sasada, Yuki Kubo and Yoshiyuki Kobayashi for their fruitful discussions. We also thank Ms. Masayo Eto for her excellent technical assistance. This work was supported in part by JSPS KAKENHI Grant numbers 26293374, 26670757, 15H04995 and 16K15734.


  1. 1.
    Yoshida S (2014) Identification of molecular targets for intraocular proliferative diseases using genomicapproaches. J Jpn Ophthalmol Soc 118:241–282Google Scholar
  2. 2.
    Hiscott P, Wong D, Grierson I (2000) Challenges in ophthalmic pathology: the vitreoretinal membrane biopsy. Eye 14(Pt 4):549–559CrossRefPubMedGoogle Scholar
  3. 3.
    Nakama T, Yoshida S, Ishikawa K, Kobayashi Y, Zhou Y, Nakao S, Sassa Y, Oshima Y, Takao K, Shimahara A, Yoshikawa K, Hamasaki T, Ohgi T, Hayashi H, Matsuda A, Kudo A, Nozaki M, Ogura Y, Kuroda M, Ishibashi T (2015) Inhibition of choroidal fibrovascular membrane formation by new class of rna interference therapeutic agent targeting periostin. Gene Ther 22:127–137CrossRefPubMedGoogle Scholar
  4. 4.
    Kirchhof B (2004) Strategies to influence PVR development. Graefes Arch Clin Exp Ophthalmol 242:699–703CrossRefPubMedGoogle Scholar
  5. 5.
    Kobayashi Y, Yoshida S, Zhou Y, Nakama T, Ishikawa K, Arima M, Nakao S, Sassa Y, Takeda A, Hisatomi T, Ikeda Y, Matsuda A, Sonoda KH, Ishibashi T (2016) Tenascin-c promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Mol Vis 22:436–445PubMedPubMedCentralGoogle Scholar
  6. 6.
    Yoshida S, Ogura A, Ishikawa K, Yoshida A, Kohno R, Yamaji Y, Ikeo K, Gojobori T, Kono T, Ishibashi T (2010) Gene expression profile of fibrovascular membranes from patients with proliferative diabetic retinopathy. Br J Ophthalmol 94:795–801CrossRefPubMedGoogle Scholar
  7. 7.
    Ishikawa K, Yoshida S, Kobayashi Y, Zhou Y, Nakama T, Nakao S, Sassa Y, Oshima Y, Niiro H, Akashi K, Kono T, Ishibashi T (2015) Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy. Investig Ophthalmol Vis Sci 56:932–946CrossRefGoogle Scholar
  8. 8.
    Asato R, Yoshida S, Ogura A, Nakama T, Ishikawa K, Nakao S, Sassa Y, Enaida H, Oshima Y, Ikeo K, Gojobori T, Kono T, Ishibashi T (2013) Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes. PLoS One 8:e54191CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindsley A, Rogers R, Chen Z, Maeda M, Kruzynska-Frejtag A, Feng JQ, Conway SJ (2005) Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25:11131–11144CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, Firulli AB, Molkentin JD, Markwald R, Conway SJ (2008) Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 102:752–760CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89CrossRefPubMedGoogle Scholar
  12. 12.
    Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Conway SJ, Molkentin JD (2008) Periostin as a heterofunctional regulator of cardiac development and disease. Curr Genomics 9:548–555CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ontsuka K, Kotobuki Y, Shiraishi H, Serada S, Ohta S, Tanemura A, Yang L, Fujimoto M, Arima K, Suzuki S, Murota H, Toda S, Kudo A, Conway SJ, Narisawa Y, Katayama I, Izuhara K, Naka T (2012) Periostin, a matricellular protein, accelerates cutaneous wound repair by activating dermal fibroblasts. Exp Dermatol 21:331–336CrossRefPubMedGoogle Scholar
  15. 15.
    Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S, Takeuchi S, Koike K, Ono J, Noshiro H, Furue M, Conway SJ, Narisawa Y, Izuhara K (2012) Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Investig 122:2590–2600CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sivaprasad S, Gupta B, Crosby-Nwaobi R, Evans J (2012) Prevalence of diabetic retinopathy in various ethnic groups: a worldwide perspective. Surv Ophthalmol 57:347–370CrossRefPubMedGoogle Scholar
  17. 17.
    Yoshida A, Yoshida S, Ishibashi T, Inomata H (1999) Intraocular neovascularization. Histol Histopathol 14:1287–1294PubMedGoogle Scholar
  18. 18.
    Yoshida S, Kubo Y, Kobayashi Y, Zhou Y, Nakama T, Yamaguchi M, Tachibana T, Ishikawa K, Arita R, Nakao S, Sassa Y, Oshima Y, Kono T, Ishibashi T (2015) Increased vitreous concentrations of MCP-1 and IL-6 after vitrectomy in patients with proliferative diabetic retinopathy: possible association with postoperative macular oedema. Br J Ophthalmol 99:960–966CrossRefPubMedGoogle Scholar
  19. 19.
    Yoshida S, Nakama T, Ishikawa K, Arima M, Tachibana T, Nakao S, Sassa Y, Yasuda M, Enaida H, Oshima Y, Kono T, Ishibashi T (2012) Antiangiogenic shift in vitreous after vitrectomy in patients with proliferative diabetic retinopathy. Investig Ophthalmol Vis Sci 53:6997–7003CrossRefGoogle Scholar
  20. 20.
    Tachibana T, Yoshida S, Kubo Y, Koayashi Y, Nakama T, Ishikawa K, Nakao S, Izuhara K, Kono T, Ishibashi T (2016) Reduced vitreal concentration of periostin after vitrectomy in patients with proliferative diabetic retinopathy. Acta Ophthalmol 94:e81–e82CrossRefPubMedGoogle Scholar
  21. 21.
    Yoshida S, Ishikawa K, Matsumoto T, Yoshida A, Ishibashi T, Kono T (2010) Reduced concentrations of angiogenesis-related factors in vitreous after vitrectomy in patients with proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 248:799–804CrossRefPubMedGoogle Scholar
  22. 22.
    Simo R, Carrasco E, Garcia-Ramirez M, Hernandez C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98CrossRefPubMedGoogle Scholar
  23. 23.
    Nakama T, Yoshida S, Ishikawa K, Kobayashi Y, Abe T, Kiyonari H, Shioi G, Katsuragi N, Ishibashi T, Morishita R, Taniyama Y (2016) Different roles played by periostin splice variants in retinal neovascularization. Exp Eye Res 153:133–140CrossRefPubMedGoogle Scholar
  24. 24.
    Yoshida S, Ishikawa K, Asato R, Arima M, Sassa Y, Yoshida A, Yoshikawa H, Narukawa K, Obika S, Ono J, Ohta S, Izuhara K, Kono T, Ishibashi T (2011) Increased expression of periostin in vitreous and fibrovascular membranes obtained from patients with proliferative diabetic retinopathy. Investig Ophthalmol Vis Sci 52:5670–5678CrossRefGoogle Scholar
  25. 25.
    Nakama T, Yoshida S, Ishikawa K, Kubo Y, Kobayashi Y, Zhou Y, Nakao S, Hisatomi T, Ikeda Y, Takao K, Yoshikawa K, Matsuda A, Ono J, Ohta S, Izuhara K, Kudo A, Sonoda KH, Ishibashi T (2017) Therapeutic effect of novel single-stranded RNAi agent targeting periostin in eyes with retinal neovascularization. Mol Ther Nucleic Acids 6:279–289CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ishikawa K, Yoshida S, Nakao S, Sassa Y, Asato R, Kohno R, Arima M, Kita T, Yoshida A, Ohuchida K, Ishibashi T (2012) Bone marrow-derived monocyte lineage cells recruited by MIP-1beta promote physiological revascularization in mouse model of oxygen-induced retinopathy. Lab Investig 92:91–101CrossRefPubMedGoogle Scholar
  27. 27.
    Snead DR, James S, Snead MP (2008) Pathological changes in the vitreoretinal junction 1: epiretinal membrane formation. Eye 22:1310–1317CrossRefPubMedGoogle Scholar
  28. 28.
    Sunderkotter C, Beil W, Roth J, Sorg C (1991) Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol 138:931–939PubMedPubMedCentralGoogle Scholar
  29. 29.
    Yoshida S, Yoshida A, Ishibashi T, Elner SG, Elner VM (2003) Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. J Leukoc Biol 73:137–144CrossRefPubMedGoogle Scholar
  30. 30.
    Ishikawa K, Yoshida S, Kadota K, Nakamura T, Niiro H, Arakawa S, Yoshida A, Akashi K, Ishibashi T (2010) Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy. Investig Ophthalmol Vis Sci 51:4307–4319CrossRefGoogle Scholar
  31. 31.
    Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483CrossRefPubMedGoogle Scholar
  32. 32.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122:787–795CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kobayashi Y, Yoshida S, Nakama T, Zhou Y, Ishikawa K, Arita R, Nakao S, Miyazaki M, Sassa Y, Oshima Y, Izuhara K, Kono T, Ishibashi T (2015) Overexpression of CD163 in vitreous and fibrovascular membranes of patients with proliferative diabetic retinopathy: possible involvement of periostin. Br J Ophthalmol 99:451–456CrossRefPubMedGoogle Scholar
  34. 34.
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185CrossRefPubMedGoogle Scholar
  35. 35.
    Yoshida S, Kobayashi Y, Nakama T, Zhou Y, Ishikawa K, Arita R, Nakao S, Miyazaki M, Sassa Y, Oshima Y, Izuhara K, Kono T, Ishibashi T (2015) Increased expression of M-CSF and IL-13 in vitreous of patients with proliferative diabetic retinopathy: implications for M2 macrophage-involving fibrovascular membrane formation. Br J Ophthalmol 99:629–634CrossRefPubMedGoogle Scholar
  36. 36.
    Liu W, Xu GZ, Jiang CH, Da CD (2009) Expression of macrophage colony-stimulating factor (M-CSF) and its receptor in streptozotocin-induced diabetic rats. Curr Eye Res 34:123–133CrossRefPubMedGoogle Scholar
  37. 37.
    Zhou Y, Yoshida S, Nakao S, Yoshimura T, Kobayashi Y, Nakama T, Kubo Y, Miyawaki K, Yamaguchi M, Ishikawa K, Oshima Y, Akashi K, Ishibashi T (2015) M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Investig Ophthalmol Vis Sci 56:4767–4777CrossRefGoogle Scholar
  38. 38.
    Zurawski SM, Vega F Jr, Huyghe B, Zurawski G (1993) Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J 12:2663–2670PubMedPubMedCentralGoogle Scholar
  39. 39.
    O’Reilly S (2013) Role of interleukin-13 in fibrosis, particularly systemic sclerosis. Biofactors 39:593–596CrossRefPubMedGoogle Scholar
  40. 40.
    Leiderman YI, Miller JW (2009) Proliferative vitreoretinopathy: pathobiology and therapeutic targets. Semin Ophthalmol 24:62–69CrossRefPubMedGoogle Scholar
  41. 41.
    Hiscott PS, Grierson I, McLeod D (1984) Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol 68:708–715CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, Sassa Y, Arita R, Miyazaki M, Enaida H, Oshima Y, Murakami N, Niiro H, Ono J, Matsuda A, Goto Y, Akashi K, Izuhara K, Kudo A, Kono T, Hafezi-Moghadam A, Ishibashi T (2014) Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J 28:131–142CrossRefPubMedGoogle Scholar
  43. 43.
    Kita T, Hata Y, Arita R, Kawahara S, Miura M, Nakao S, Mochizuki Y, Enaida H, Goto Y, Shimokawa H, Hafezi-Moghadam A, Ishibashi T (2008) Role of TGF-beta in proliferative vitreoretinal diseases and rock as a therapeutic target. Proc Natl Acad Sci USA 105:17504–17509CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Banerjee S, Savant V, Scott RA, Curnow SJ, Wallace GR, Murray PI (2007) Multiplex bead analysis of vitreous humor of patients with vitreoretinal disorders. Investig Ophthalmol Vis Sci 48:2203–2207CrossRefGoogle Scholar
  45. 45.
    Harada C, Mitamura Y, Harada T (2006) The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res 25:149–164CrossRefPubMedGoogle Scholar
  46. 46.
    He S, Chen Y, Khankan R, Barron E, Burton R, Zhu D, Ryan SJ, Oliver N, Hinton DR (2008) Connective tissue growth factor as a mediator of intraocular fibrosis. Investig Ophthalmol Vis Sci 49:4078–4088CrossRefGoogle Scholar
  47. 47.
    Elner SG, Elner VM, Jaffe GJ, Stuart A, Kunkel SL, Strieter RM (1995) Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr Eye Res 14:1045–1053CrossRefPubMedGoogle Scholar
  48. 48.
    Pennock S, Rheaume MA, Mukai S, Kazlauskas A (2011) A novel strategy to develop therapeutic approaches to prevent proliferative vitreoretinopathy. Am J Pathol 179:2931–2940CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li G, Oparil S, Sanders JM, Zhang L, Dai M, Chen LB, Conway SJ, McNamara CA, Sarembock IJ (2006) Phosphatidylinositol-3-kinase signaling mediates vascular smooth muscle cell expression of periostin in vivo and in vitro. Atherosclerosis 188:292–300CrossRefPubMedGoogle Scholar
  50. 50.
    Dangaria SJ, Ito Y, Walker C, Druzinsky R, Luan X, Diekwisch TG (2009) Extracellular matrix-mediated differentiation of periodontal progenitor cells. Differentiation 78:79–90CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355:1474–1485CrossRefPubMedGoogle Scholar
  52. 52.
    Schlingemann RO (2004) Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 242:91–101CrossRefPubMedGoogle Scholar
  53. 53.
    Bloch SB, Lund-Andersen H, Sander B, Larsen M (2013) Subfoveal fibrosis in eyes with neovascular age-related macular degeneration treated with intravitreal ranibizumab. Am J Ophthalmol 156(116–124):e111Google Scholar
  54. 54.
    Daniel E, Toth CA, Grunwald JE, Jaffe GJ, Martin DF, Fine SL, Huang J, Ying GS, Hagstrom SA, Winter K, Maguire MG, Comparison of Age-related Macular Degeneration Treatments Trials Research G (2014) Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121:656–666CrossRefPubMedGoogle Scholar
  55. 55.
    Kobayashi Y, Yoshida S, Zhou Y, Nakama T, Ishikawa K, Kubo Y, Arima M, Nakao S, Hisatomi T, Ikeda Y, Matsuda A, Sonoda KH, Ishibashi T (2016) Tenascin-c secreted by transdifferentiated retinal pigment epithelial cells promotes choroidal neovascularization via integrin alphav. Lab Investig 96:1178–1188CrossRefPubMedGoogle Scholar
  56. 56.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide rnas mediate rna interference in cultured mammalian cells. Nature 411:494–498CrossRefPubMedGoogle Scholar
  57. 57.
    Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK (2011) Rna interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67CrossRefPubMedGoogle Scholar
  58. 58.
    Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Kariko K, Ambati BK, Wilgus TA, DiPietro LA, Sakurai E, Zhang K, Smith JR, Taylor EW, Ambati J (2008) Sequence- and target-independent angiogenesis suppression by sirna via tlr3. Nature 452:591–597CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yang Z, Stratton C, Francis PJ, Kleinman ME, Tan PL, Gibbs D, Tong Z, Chen H, Constantine R, Yang X, Chen Y, Zeng J, Davey L, Ma X, Hau VS, Wang C, Harmon J, Buehler J, Pearson E, Patel S, Kaminoh Y, Watkins S, Luo L, Zabriskie NA, Bernstein PS, Cho W, Schwager A, Hinton DR, Klein ML, Hamon SC, Simmons E, Yu B, Campochiaro B, Sunness JS, Campochiaro P, Jorde L, Parmigiani G, Zack DJ, Katsanis N, Ambati J, Zhang K (2008) Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359:1456–1463CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cho WG, Albuquerque RJ, Kleinman ME, Tarallo V, Greco A, Nozaki M, Green MG, Baffi JZ, Ambati BK, De Falco M, Alexander JS, Brunetti A, De Falco S, Ambati J (2009) Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci USA 106:7137–7142CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hamasaki T, Suzuki H, Shirohzu H, Matsumoto T, D’Alessandro-Gabazza CN, Gil-Bernabe P, Boveda-Ruiz D, Naito M, Kobayashi T, Toda M, Mizutani T, Taguchi O, Morser J, Eguchi Y, Kuroda M, Ochiya T, Hayashi H, Gabazza EC, Ohgi T (2012) Efficacy of a novel class of rna interference therapeutic agents. PLoS One 7:e42655CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Fujita Y, Takeshita F, Mizutani T, Ohgi T, Kuwano K, Ochiya T (2013) A novel platform to enable inhaled naked RNAi medicine for lung cancer. Sci Rep 3:3325CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Takanashi M, Sudo K, Ueda S, Ohno S, Yamada Y, Osakabe Y, Goto H, Matsunaga Y, Ishikawa A, Usui Y, Kuroda M (2015) Novel types of small RNA exhibit sequence- and target-dependent angiogenesis suppression without activation of toll-like receptor 3 in an age-related macular degeneration (AMD) mouse model. Mol Ther Nucleic Acids 4:e258CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA (2009) An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci USA 106:18751–18756CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) Vegf receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shigeo Yoshida
    • 1
  • Takahito Nakama
    • 1
  • Keijiro Ishikawa
    • 1
  • Shintaro Nakao
    • 1
  • Koh-hei Sonoda
    • 1
  • Tatsuro Ishibashi
    • 1
  1. 1.Department of OphthalmologyKyushu University Graduate School of Medical SciencesFukuokaJapan

Personalised recommendations