Cellular and Molecular Life Sciences

, Volume 74, Issue 23, pp 4315–4320 | Cite as

Periostin in kidney diseases

  • Niki Prakoura
  • Christos Chatziantoniou
Multi-author review


Chronic kidney disease is an incurable to date pathology, with renal replacement therapy through dialysis or transplantation being the only available option for end-stage patients. A deeper understanding of the molecular mechanisms governing the progression of kidney diseases will permit the identification of unknown mediators and potential novel markers or targets of therapy which promise more efficient diagnostic and therapeutic applications. Over the last years, periostin was established by several studies as a novel key player in the progression of renal disease. Periostin is de novo expressed focally by the injured kidney cells during the development of renal disease. In diverse cohorts of renal disease patients, the expression levels of periostin in the kidney and urine were highly correlated with the stage of the pathology and the decline of renal function. Subsequent studies in animal models demonstrated that periostin is centrally involved in mediating renal inflammation and fibrosis, contributing to the deterioration of renal structure and function. Genetic or pharmaco-genetic inhibition of periostin in animal models of renal disease was efficient in arresting the progression of the pathology. This review will summarize the recent advances on periostin in the field of kidney diseases and will discuss its utility of as a novel target of therapy for chronic kidney disease.


Chronic kidney disease Periostin Target of therapy Inflammation Fibrosis 



This work was financially supported by funds from Institut National de la Santé Et de la Recherche Médicale (INSERM) and the Agence Nationale de la Recherche (ANR).


  1. 1.
    Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M et al (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171. doi: 10.1016/S0140-6736(14)61682-2 CrossRefGoogle Scholar
  2. 2.
    López-Novoa JM, Martínez-Salgado C, Rodríguez-Peña AB, López-Hernández FJ (2010) Common pathophysiological mechanisms of chronic kidney disease: therapeutic perspectives. Pharmacol Ther 128(1):61–81. doi: 10.1016/j.pharmthera.2010.05.006 CrossRefPubMedGoogle Scholar
  3. 3.
    Devarajan P (2010) The use of targeted biomarkers for chronic kidney disease. Adv Chronic Kidney Dis 17(6):469–479. doi: 10.1053/j.ackd.2010.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wong MG, Pollock CA (2014) Biomarkers in kidney fibrosis: are they useful? Kidney Int Suppl 4(1):79–83. doi: 10.1038/kisup.2014.15 CrossRefGoogle Scholar
  5. 5.
    Prakoura N, Chatziantoniou C (2017) Periostin and discoidin domain receptor 1: new biomarkers or targets for therapy of renal disease. Front Med 4:52. doi: 10.3389/fmed.2017.00052 CrossRefGoogle Scholar
  6. 6.
    Kavvadas P, Dussaule JC, Chatziantoniou C (2014) Searching novel diagnostic markers and targets for therapy of CKD. Kidney Int Suppl 4(1):53–57. doi: 10.1038/kisup.2014.10 CrossRefGoogle Scholar
  7. 7.
    Boor P, Floege J (2015) Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 15(4):863–886. doi: 10.1111/ajt.13180 CrossRefPubMedGoogle Scholar
  8. 8.
    Lee SY, Kim SI, Choi ME (2015) Therapeutic targets for treating fibrotic kidney diseases. Transl Res 165(4):512–530. doi: 10.1016/j.trsl.2014.07.010 CrossRefPubMedGoogle Scholar
  9. 9.
    Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14(7):1239–1249. doi: 10.1359/jbmr.1999.14.7.1239 CrossRefPubMedGoogle Scholar
  10. 10.
    Prakoura N, Chatziantoniou C (2017) Matricellular proteins and organ fibrosis. Curr Pathobiol Rep. doi: 10.1007/s40139-017-0138-6 Google Scholar
  11. 11.
    Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J, Hoffman S, Wen X, Sugi Y, Kern CB, Mjaatvedt CH, Turner DK, Oka T, Conway SJ, Molkentin JD, Forgacs G, Markwald RR (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101(3):695–711. doi: 10.1002/jcb.21224 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tanabe H, Takayama I, Nishiyama T, Shimazaki M, Kii I, Li M, Amizuka N, Katsube K, Kudo A (2010) Periostin associates with Notch1 precursor to maintain Notch1 expression under a stress condition in mouse cells. PLoS One 5:e12234. doi: 10.1371/journal.pone.0012234 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Maruhashi T, Kii I, Saito M, Kudo A (2010) Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem 285(17):13294–13303. doi: 10.1074/jbc.M109.088864 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, Kudo A (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285(3):2028–2039. doi: 10.1074/jbc.M109.051961 CrossRefPubMedGoogle Scholar
  15. 15.
    Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62(18):5358–5364PubMedGoogle Scholar
  16. 16.
    Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA, Lorts A, Brunskill EW, Dorn GW 2nd, Conway SJ, Aronow BJ, Robbins J, Molkentin JD (2007) Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 101(3):313–321. doi: 10.1161/CIRCRESAHA.107.149047 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205(2):295–303. doi: 10.1084/jem.20071297 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, Muller SJ, Fahy JV (2010) Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci USA 107(32):14170–14175. doi: 10.1073/pnas.1009426107 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Uchida M, Shiraishi H, Ohta S, Arima K, Taniguchi K, Suzuki S, Okamoto M, Ahlfeld SK, Ohshima K, Kato S, Toda S, Sagara H, Aizawa H, Hoshino T, Conway SJ, Hayashi S, Izuhara K (2012) Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol 46(5):677–686. doi: 10.1165/rcmb.2011-0115OC CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Naik PK, Bozyk PD, Bentley JK, Popova AP, Birch CM, Wilke CA, Fry CD, White ES, Sisson TH, Tayob N, Carnemolla B, Orecchia P, Flaherty KR, Hershenson MB, Murray S, Martinez FJ, Moore BB, COMET Investigators (2012) Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 303(12):L1046–L1056. doi: 10.1152/ajplung.00139.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhou HM, Wang J, Elliott C, Wen W, Hamilton DW, Conway SJ (2010) Spatiotemporal expression of periostin during skin development and incisional wound healing: lessons for human fibrotic scar formation. J Cell Commun Signal 4(2):99–107. doi: 10.1007/s12079-010-0090-2 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang L, Serada S, Fujimoto M, Terao M, Kotobuki Y, Kitaba S, Matsui S, Kudo A, Naka T, Murota H, Katayama I (2012) Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS One 7(7):e41994. doi: 10.1371/journal.pone.0041994 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lorts A, Schwanekamp JA, Baudino TA, McNally EM, Molkentin JD (2012) Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-β pathway. Proc Natl Acad Sci USA 109(27):10978–10983. doi: 10.1073/pnas.1204708109 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ozdemir C, Akpulat U, Sharafi P, Yıldız Y, Onbaşılar I, Kocaefe C (2014) Periostin is temporally expressed as an extracellular matrix component in skeletal muscle regeneration and differentiation. Gene 553(2):130–139. doi: 10.1016/j.gene.2014.10.014 CrossRefPubMedGoogle Scholar
  25. 25.
    Sugiyama A, Kanno K, Nishimichi N, Ohta S, Ono J, Conway SJ, Izuhara K, Yokosaki Y, Tazuma S (2016) Periostin promotes hepatic fibrosis in mice by modulating hepatic stellate cell activation via αv integrin interaction. J Gastroenterol 51(12):1161–1174. doi: 10.1007/s00535-016-1206-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Nakama T, Yoshida S, Ishikawa K, Kobayashi Y, Zhou Y, Nakao S, Sassa Y, Oshima Y, Takao K, Shimahara A, Yoshikawa K, Hamasaki T, Ohgi T, Hayashi H, Matsuda A, Kudo A, Nozaki M, Ogura Y, Kuroda M, Ishibashi T (2015) Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin. Gene Ther 22(2):127–137. doi: 10.1038/gt.2014.112 CrossRefPubMedGoogle Scholar
  27. 27.
    Wallace DP, Quante MT, Reif GA, Nivens E, Ahmed F, Hempson SJ, Blanco G, Yamaguchi T (2008) Periostin induces proliferation of human autosomal dominant polycystic kidney cells through alphaV-integrin receptor. Am J Physiol Renal Physiol 295(5):F1463–F1471. doi: 10.1152/ajprenal.90266.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sen K, Lindenmeyer MT, Gaspert A, Eichinger F, Neusser MA, Kretzler M, Segerer S, Cohen CD (2011) Periostin is induced in glomerular injury and expressed de novo in interstitial renal fibrosis. Am J Pathol 179(4):1756–1767. doi: 10.1016/j.ajpath.2011.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wantanasiri P, Satirapoj B, Charoenpitakchai M, Aramwit P (2015) Periostin: a novel tissue biomarker correlates with chronicity index and renal function in lupus nephritis patients. Lupus 24(8):835–845. doi: 10.1177/0961203314566634 CrossRefPubMedGoogle Scholar
  30. 30.
    Satirapoj B, Tassanasorn S, Charoenpitakchai M, Supasyndh O (2015) Periostin as a tissue and urinary biomarker of renal injury in type 2 diabetes mellitus. PLoS One 10(4):e0124055. doi: 10.1371/journal.pone.0124055 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hwang JH, Lee JP, Kim CT, Yang SH, Kim JH, An JN, Moon KC, Lee H, Oh YK, Joo KW, Kim DK, Kim YS, Lim CS (2016) Urinary periostin excretion predicts renal outcome in IgA nephropathy. Am J Nephrol 44(6):481–492. doi: 10.1159/000452228 CrossRefPubMedGoogle Scholar
  32. 32.
    Satirapoj B, Witoon R, Ruangkanchanasetr P, Wantanasiri P, Charoenpitakchai M, Choovichian P (2014) Urine periostin as a biomarker of renal injury in chronic allograft nephropathy. Transplant Proc 46(1):135–140. doi: 10.1016/j.transproceed.2013.07.069 CrossRefPubMedGoogle Scholar
  33. 33.
    Satirapoj B, Wang Y, Chamberlin MP, Dai T, LaPage J, Phillips L, Nast CC, Adler SG (2012) Periostin: novel tissue and urinary biomarker of progressive renal injury induces a coordinated mesenchymal phenotype in tubular cells. Nephrol Dial Transplant 27(7):2702–2711. doi: 10.1093/ndt/gfr670 CrossRefPubMedGoogle Scholar
  34. 34.
    Guerrot D, Dussaule JC, Mael-Ainin M, Xu-Dubois YC, Rondeau E, Chatziantoniou C, Placier S (2012) Identification of periostin as a critical marker of progression/reversal of hypertensive nephropathy. PLoS One 7(3):e31974. doi: 10.1371/journal.pone.0031974 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vethe H, Finne K, Skogstrand T, Vaudel M, Vikse BE, Hultström M, Placier S, Scherer A, Tenstad O, Marti HP (2015) Distinct protein signature of hypertension-induced damage in the renal proteome of the two-kidney, one-clip rat model. J Hypertens 33(1):126–135. doi: 10.1097/HJH.0000000000000370 CrossRefPubMedGoogle Scholar
  36. 36.
    Li G, Oparil S, Sanders JM, Zhang L, Dai M, Chen LB, Conway SJ, McNamara CA, Sarembock IJ (2006) Phosphatidylinositol-3-kinase signaling mediates vascular smooth muscle cell expression of periostin in vivo and in vitro. Atherosclerosis 188(2):292–300. doi: 10.1016/j.atherosclerosis.2005.11.002 CrossRefPubMedGoogle Scholar
  37. 37.
    Li L, Fan D, Wang C, Wang JY, Cui XB, Wu D, Zhou Y, Wu LL (2011) Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-β1 pathways in cardiac fibroblasts. Cardiovasc Res 91(1):80–89. doi: 10.1093/cvr/cvr067 CrossRefPubMedGoogle Scholar
  38. 38.
    Mael-Ainin M, Abed A, Conway SJ, Dussaule JC, Chatziantoniou C (2014) Inhibition of periostin expression protects against the development of renal inflammation and fibrosis. J Am Soc Nephrol 25(8):1724–1736. doi: 10.1681/ASN.2013060664 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wallace DP, White C, Savinkova L, Nivens E, Reif GA, Pinto CS, Raman A, Parnell SC, Conway SJ, Fields TA (2014) Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney Int 85(4):845–854. doi: 10.1038/ki.2013.488 CrossRefPubMedGoogle Scholar
  40. 40.
    Prakoura N, Kavvadas P, Kormann R, Dussaule JC, Chadjichristos C, Chatziantoniou C (2017) NFκB-induced periostin activates integrin-β3 signaling to promote renal injury in GN. J Am Soc Nephrol 28(5):1475–1490. doi: 10.1681/ASN.2016070709 CrossRefPubMedGoogle Scholar
  41. 41.
    Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, McKenzie AN, Nagai H, Hotokebuchi T, Izuhara K (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118(1):98–104. doi: 10.1016/j.jaci.2006.02.046 CrossRefPubMedGoogle Scholar
  42. 42.
    Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S, Takeuchi S, Koike K, Ono J, Noshiro H, Furue M, Conway SJ, Narisawa Y, Izuhara K (2012) Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Investig 122(7):2590–2600. doi: 10.1172/JCI58978 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Li G, Jin R, Norris RA, Zhang L, Yu S, Wu F, Markwald RR, Nanda A, Conway SJ, Smyth SS, Granger DN (2010) Periostin mediates vascular smooth muscle cell migration through the integrins alphavbeta3 and alphavbeta5 and focal adhesion kinase (FAK) pathway. Atherosclerosis 208(2):358–365. doi: 10.1016/j.atherosclerosis.2009.07.046 CrossRefPubMedGoogle Scholar
  44. 44.
    Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, Rich JN, Bao S (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17(2):170–182. doi: 10.1038/ncb3090 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhao X, Hao J, Duan H, Rong Z, Li F (2017) Phosphoinositide 3-kinase/protein kinase B/periostin mediated platelet-derived growth factor-induced cell proliferation and extracellular matrix production in lupus nephritis. Exp Biol Med (Maywood) 242(2):160–168. doi: 10.1177/1535370216668050 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut National de la Santé Et de la Recherche Médicale UMRS 1155, Tenon HospitalParisFrance
  2. 2.Sorbonne Universités, UPMC Paris 6ParisFrance

Personalised recommendations