Cellular and Molecular Life Sciences

, Volume 74, Issue 23, pp 4321–4328 | Cite as

Periostin in the pathogenesis of skin diseases

Multi-author review

Abstract

Skin is an organ that is susceptible to damage by external injury, chronic inflammation, and autoimmunity. Tissue damage causes alterations in both the configuration and type of cells in lesional skin. This phenomenon, called tissue remodeling, is a universal biological response elicited by programmed cell death, inflammation, immune disorders, and tumorigenic, tumor proliferative, and cytoreductive activity. In this process, changes in the components of the extracellular matrix are required to provide an environment that facilitates tissue remodeling. Among these extracellular matrix components, periostin, a glycoprotein that is predominantly secreted from dermal fibroblasts, has attracted attention. Periostin localizes in the papillary dermis of normal skin, and is aberrantly expressed in the dermis of lesional skin in atopic dermatitis, scar, systemic/limited scleroderma, melanoma, cutaneous T cell lymphoma, and skin damage caused by allergic/autoimmune responses. Periostin induces processes that result in the development of dermal fibrosis, and activate or protract the immune response. The aim of this review was to summarize recent knowledge of the role of periostin in the pathogenesis of dermatoses, and to explore whether periostin is a potential therapeutic target for skin diseases.

Keywords

Skin diseases Periostin Scleroderma Atopic dermatitis Melanoma Scar Mycosis fungoides 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Kudo A (2011) Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci 68(19):3201–3207. doi: 10.1007/s00018-011-0784-5 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Walker JT, McLeod K, Kim S, Conway SJ, Hamilton DW (2016) Periostin as a multifunctional modulator of the wound healing response. Cell Tissue Res 365(3):453–465. doi: 10.1007/s00441-016-2426-6 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Conway SJ, Molkentin JD (2008) Periostin as a heterofunctional regulator of cardiac development and disease. Curr Genom 9(8):548–555. doi: 10.2174/138920208786847917 CrossRefGoogle Scholar
  4. 4.
    Dorn GW 2nd (2007) Periostin and myocardial repair, regeneration, and recovery. N Engl J Med 357(15):1552–1554. doi: 10.1056/NEJMcibr074816 CrossRefPubMedGoogle Scholar
  5. 5.
    Takeshita S, Kikuno R, Tezuka K, Amann E (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294(Pt 1):271–278CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14(7):1239–1249. doi: 10.1359/jbmr.1999.14.7.1239 CrossRefPubMedGoogle Scholar
  7. 7.
    Weller K, Foitzik K, Paus R, Syska W, Maurer M (2006) Mast cells are required for normal healing of skin wounds in mice. FASEB J 20(13):2366–2368. doi: 10.1096/fj.06-5837fje CrossRefPubMedGoogle Scholar
  8. 8.
    Yang L, Murota H, Serada S, Fujimoto M, Kudo A, Naka T, Katayama I (2014) Histamine contributes to tissue remodeling via periostin expression. J Investig Dermatol 134(8):2105–2113. doi: 10.1038/jid.2014.120 CrossRefPubMedGoogle Scholar
  9. 9.
    Yamaguchi Y, Yoshikawa K (2001) Cutaneous wound healing: an update. J Dermatol 28(10):521–534CrossRefPubMedGoogle Scholar
  10. 10.
    Greiling D, Clark RA (1997) Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J Cell Sci 110(Pt 7):861–870PubMedGoogle Scholar
  11. 11.
    Assoian RK, Fleurdelys BE, Stevenson HC, Miller PJ, Madtes DK, Raines EW, Ross R, Sporn MB (1987) Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci USA 84(17):6020–6024CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hinz B, Gabbiani G (2003) Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 14(5):538–546CrossRefPubMedGoogle Scholar
  13. 13.
    Sidgwick GP, Bayat A (2012) Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J Eur Acad Dermatol Venereol 26(2):141–152. doi: 10.1111/j.1468-3083.2011.04200.x CrossRefPubMedGoogle Scholar
  14. 14.
    Nishiyama T, Kii I, Kashima TG, Kikuchi Y, Ohazama A, Shimazaki M, Fukayama M, Kudo A (2011) Delayed re-epithelialization in periostin-deficient mice during cutaneous wound healing. PLoS One 6(4):e18410. doi: 10.1371/journal.pone.0018410 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4(8):583–594. doi: 10.1038/nri1412 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, McKenzie AN, Nagai H, Hotokebuchi T, Izuhara K (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118(1):98–104. doi: 10.1016/j.jaci.2006.02.046 CrossRefPubMedGoogle Scholar
  17. 17.
    Ontsuka K, Kotobuki Y, Shiraishi H, Serada S, Ohta S, Tanemura A, Yang L, Fujimoto M, Arima K, Suzuki S, Murota H, Toda S, Kudo A, Conway SJ, Narisawa Y, Katayama I, Izuhara K, Naka T (2012) Periostin, a matricellular protein, accelerates cutaneous wound repair by activating dermal fibroblasts. Exp Dermatol 21(5):331–336. doi: 10.1111/j.1600-0625.2012.01454.x CrossRefPubMedGoogle Scholar
  18. 18.
    Murota H, Katayama I (2017) Exacerbating factors of itch in atopic dermatitis. Allergol Int 66(1):8–13. doi: 10.1016/j.alit.2016.10.005 CrossRefPubMedGoogle Scholar
  19. 19.
    Katayama I, Yokozeki H, Nishioka K (1992) Mast-cell-derived mediators induce epidermal cell proliferation: clue for lichenified skin lesion formation in atopic dermatitis. Int Arch Allergy Immunol 98(4):410–414CrossRefPubMedGoogle Scholar
  20. 20.
    Murota H, Bae S, Hamasaki Y, Maruyama R, Katayama I (2008) Emedastine difumarate inhibits histamine-induced collagen synthesis in dermal fibroblasts. J Investig Allergol Clin Immunol 18(4):245–252PubMedGoogle Scholar
  21. 21.
    Murota H, Katayama I (2011) Assessment of antihistamines in the treatment of skin allergies. Curr Opin Allergy Clin Immunol 11(5):428–437. doi: 10.1097/ACI.0b013e32834a96e9 CrossRefPubMedGoogle Scholar
  22. 22.
    Murota H, Katayama I (2009) Emedastine difumarate: a review of its potential ameliorating effect for tissue remodeling in allergic diseases. Expert Opin Pharmacother 10(11):1859–1867. doi: 10.1517/14656560903078410 CrossRefPubMedGoogle Scholar
  23. 23.
    Hoffjan S, Epplen JT (2005) The genetics of atopic dermatitis: recent findings and future options. J Mol Med (Berl) 83(9):682–692. doi: 10.1007/s00109-005-0672-2 CrossRefGoogle Scholar
  24. 24.
    Wood SH, Ke X, Nuttall T, McEwan N, Ollier WE, Carter SD (2009) Genome-wide association analysis of canine atopic dermatitis and identification of disease related SNPs. Immunogenetics 61(11–12):765–772. doi: 10.1007/s00251-009-0402-y CrossRefPubMedGoogle Scholar
  25. 25.
    Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S, Takeuchi S, Koike K, Ono J, Noshiro H, Furue M, Conway SJ, Narisawa Y, Izuhara K (2012) Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Investig 122(7):2590–2600. doi: 10.1172/JCI58978 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shiraishi H, Masuoka M, Ohta S, Suzuki S, Arima K, Taniguchi K, Aoki S, Toda S, Yoshimoto T, Inagaki N, Conway SJ, Narisawa Y, Izuhara K (2012) Periostin contributes to the pathogenesis of atopic dermatitis by inducing TSLP production from keratinocytes. Allergol Int 61(4):563–572. doi: 10.2332/allergolint.10-OA-0297 CrossRefPubMedGoogle Scholar
  27. 27.
    Nishioka K, Katayama I, Kondo H, Shinkai H, Ueki H, Tamaki K, Takehara K, Tajima S, Maeda M, Hayashi S, Kodama H, Miyachi Y, Mizutani H, Fujisaku A, Sasaki T, Shimizu M, Kaburagi J (1996) Epidemiological analysis of prognosis of 496 Japanese patients with progressive systemic sclerosis (SSc). Scleroderma Research Committee Japan. J Dermatol 23(10):677–682CrossRefPubMedGoogle Scholar
  28. 28.
    Varga J, Rudnicka L, Uitto J (1994) Connective tissue alterations in systemic sclerosis. Clin Dermatol 12(3):387–396CrossRefPubMedGoogle Scholar
  29. 29.
    Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol 11(4):233–244. doi: 10.1038/nrneph.2014.246 CrossRefPubMedGoogle Scholar
  30. 30.
    Marangoni RG, Korman BD, Wei J, Wood TA, Graham LV, Whitfield ML, Scherer PE, Tourtellotte WG, Varga J (2015) Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 67(4):1062–1073. doi: 10.1002/art.38990 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lafyatis R (2014) Transforming growth factor beta—at the centre of systemic sclerosis. Nat Rev Rheumatol 10(12):706–719. doi: 10.1038/nrrheum.2014.137 CrossRefPubMedGoogle Scholar
  32. 32.
    Palumbo-Zerr K, Zerr P, Distler A, Fliehr J, Mancuso R, Huang J, Mielenz D, Tomcik M, Furnrohr BG, Scholtysek C, Dees C, Beyer C, Kronke G, Metzger D, Distler O, Schett G, Distler JH (2015) Orphan nuclear receptor NR4A1 regulates transforming growth factor-beta signaling and fibrosis. Nat Med 21(2):150–158. doi: 10.1038/nm.3777 CrossRefPubMedGoogle Scholar
  33. 33.
    Weng CM, Yu CC, Kuo ML, Chen BC, Lin CH (2014) Endothelin-1 induces connective tissue growth factor expression in human lung fibroblasts by ETAR-dependent JNK/AP-1 pathway. Biochem Pharmacol 88(3):402–411. doi: 10.1016/j.bcp.2014.01.030 CrossRefPubMedGoogle Scholar
  34. 34.
    Abraham D (2008) Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford) 47(Suppl 5):v8–v9. doi: 10.1093/rheumatology/ken278 CrossRefGoogle Scholar
  35. 35.
    Stawski L, Han R, Bujor AM, Trojanowska M (2012) Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis. Arthritis Res Ther 14(4):R194. doi: 10.1186/ar4028 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Iwayama T, Olson LE (2013) Involvement of PDGF in fibrosis and scleroderma: recent insights from animal models and potential therapeutic opportunities. Curr Rheumatol Rep 15(2):304. doi: 10.1007/s11926-012-0304-0 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang L, Serada S, Fujimoto M, Terao M, Kotobuki Y, Kitaba S, Matsui S, Kudo A, Naka T, Murota H, Katayama I (2012) Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS One 7(7):e41994. doi: 10.1371/journal.pone.0041994 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Makino K, Makino T, Stawski L, Mantero JC, Lafyatis R, Simms R, Trojanowska M (2017) Blockade of PDGF receptors by crenolanib has therapeutic effect in patient fibroblasts and in preclinical models of systemic sclerosis. J Investig Dermatol. doi: 10.1016/j.jid.2017.03.032 PubMedGoogle Scholar
  39. 39.
    Kim MW, Park JT, Kim JH, Koh SJ, Yoon HS, Cho S, Park HS (2017) Periostin in mature stage localized scleroderma. Ann Dermatol 29(3):268–275. doi: 10.5021/ad.2017.29.3.268 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kakizaki A, Fujimura T, Furudate S, Kambayashi Y, Aiba S (2015) Immunohistochemical similarities between lichen sclerosus et atrophicus and morphea: a case study. Case Rep Dermatol 7(1):39–45. doi: 10.1159/000381010 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yamaguchi Y, Ono J, Masuoka M, Ohta S, Izuhara K, Ikezawa Z, Aihara M, Takahashi K (2013) Serum periostin levels are correlated with progressive skin sclerosis in patients with systemic sclerosis. Br J Dermatol 168(4):717–725. doi: 10.1111/bjd.12117 CrossRefPubMedGoogle Scholar
  42. 42.
    Terao M, Yang L, Matsumura S, Yutani M, Murota H, Katayama I (2015) A vitamin D analog inhibits Th2 cytokine- and TGF beta-induced periostin production in fibroblasts: a potential role for vitamin D in skin sclerosis. Dermatoendocrinology 7(1):e1010983. doi: 10.1080/19381980.2015.1010983 CrossRefGoogle Scholar
  43. 43.
    Gaggioli C, Sahai E (2007) Melanoma invasion—current knowledge and future directions. Pigment Cell Res 20(3):161–172. doi: 10.1111/j.1600-0749.2007.00378.x CrossRefPubMedGoogle Scholar
  44. 44.
    Kotobuki Y, Yang L, Serada S, Tanemura A, Yang F, Nomura S, Kudo A, Izuhara K, Murota H, Fujimoto M, Katayama I, Naka T (2014) Periostin accelerates human malignant melanoma progression by modifying the melanoma microenvironment. Pigment Cell Melanoma Res 27(4):630–639. doi: 10.1111/pcmr.12245 CrossRefPubMedGoogle Scholar
  45. 45.
    Tilman G, Mattiussi M, Brasseur F, van Baren N, Decottignies A (2007) Human periostin gene expression in normal tissues, tumors and melanoma: evidences for periostin production by both stromal and melanoma cells. Mol Cancer 6:80. doi: 10.1186/1476-4598-6-80 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fukuda K, Sugihara E, Ohta S, Izuhara K, Funakoshi T, Amagai M, Saya H (2015) Periostin is a key niche component for wound metastasis of melanoma. PLoS One 10(6):e0129704. doi: 10.1371/journal.pone.0129704 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hutchenreuther J, Vincent KM, Carter DE, Postovit LM, Leask A (2015) CCN2 expression by tumor stroma is required for melanoma metastasis. J Investig Dermatol 135(11):2805–2813. doi: 10.1038/jid.2015.279 CrossRefPubMedGoogle Scholar
  48. 48.
    Egbert M, Ruetze M, Sattler M, Wenck H, Gallinat S, Lucius R, Weise JM (2014) The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging. J Dermatol Sci 73(1):40–48. doi: 10.1016/j.jdermsci.2013.08.010 CrossRefPubMedGoogle Scholar
  49. 49.
    Bae Y, Izuhara K, Ohta S, Ono J, Hong GU, Ro JY, Park GH, Choi JH (2016) Periostin and interleukin-13 are independently related to chronic spontaneous urticaria. Allergy Asthma Immunol Res 8(5):457–460. doi: 10.4168/aair.2016.8.5.457 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fujimura T, Kakizaki A, Furudate S, Aiba S (2016) A possible interaction between periostin and CD163+ skin-resident macrophages in pemphigus vulgaris and bullous pemphigoid. Exp Dermatol. doi: 10.1111/exd.13157 Google Scholar
  51. 51.
    Furudate S, Fujimura T, Kakizaki A, Kambayashi Y, Asano M, Watabe A, Aiba S (2016) The possible interaction between periostin expressed by cancer stroma and tumor-associated macrophages in developing mycosis fungoides. Exp Dermatol 25(2):107–112. doi: 10.1111/exd.12873 CrossRefPubMedGoogle Scholar
  52. 52.
    Kempf W, Sander CA (2010) Classification of cutaneous lymphomas—an update. Histopathology 56(1):57–70. doi: 10.1111/j.1365-2559.2009.03455.x CrossRefPubMedGoogle Scholar
  53. 53.
    Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S, Robson A, Calonje E, Stefanato CM, Wain EM, Wilkins B, Fields PA, Dean A, Webb K, Scarisbrick J, Morris S, Whittaker SJ (2010) Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol 28(31):4730–4739. doi: 10.1200/JCO.2009.27.7665 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Dermatology, Course of Integrated Medicine, Graduate School of MedicineOsaka UniversitySuitaJapan

Personalised recommendations