Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 3, pp 527–546 | Cite as

CBP-mediated SMN acetylation modulates Cajal body biogenesis and the cytoplasmic targeting of SMN

  • Vanesa Lafarga
  • Olga Tapia
  • Sahil Sharma
  • Rocio Bengoechea
  • Georg Stoecklin
  • Miguel Lafarga
  • Maria T. Berciano
Original Article

Abstract

The survival of motor neuron (SMN) protein plays an essential role in the biogenesis of spliceosomal snRNPs and the molecular assembly of Cajal bodies (CBs). Deletion of or mutations in the SMN1 gene cause spinal muscular atrophy (SMA) with degeneration and loss of motor neurons. Reduced SMN levels in SMA lead to deficient snRNP biogenesis with consequent splicing pathology. Here, we demonstrate that SMN is a novel and specific target of the acetyltransferase CBP (CREB-binding protein). Furthermore, we identify lysine (K) 119 as the main acetylation site in SMN. Importantly, SMN acetylation enhances its cytoplasmic localization, causes depletion of CBs, and reduces the accumulation of snRNPs in nuclear speckles. In contrast, the acetylation-deficient SMNK119R mutant promotes formation of CBs and a novel category of promyelocytic leukemia (PML) bodies enriched in this protein. Acetylation increases the half-life of SMN protein, reduces its cytoplasmic diffusion rate and modifies its interactome. Hence, SMN acetylation leads to its dysfunction, which explains the ineffectiveness of HDAC (histone deacetylases) inhibitors in SMA therapy despite their potential to increase SMN levels.

Keywords

Cajal bodies Nuclear speckles SMN SMA Protein acetylation CBP SMN complex SMN interactome SnRNP HDAC inhibitor 

Abbreviations

SMN

Survival of motor neuron protein

CB

Cajal body

SMA

Spinal muscular atrophy

snRNP

Small nuclear ribonucleoprotein

CBP

CREB-binding protein

PML

Promyelocytic leukemia protein

HDAC

Histone deacetylases

snoRNP

Small nucleolar ribonucleoprotein

Pre-mRNA

Precursor messenger RNA

Pre-rRNA

Precursor ribosomal RNA

sca-RNA

Small Cajal body-specific RNA

PTM

Post-translational modification

SUMO1

Small ubiquitin-like modifier 1

SIM

SUMO interacting motif

TSA

Trichostatin A

SAHA

Suberoylanilide hydroxamic acid

KAc/SUMO

Acetyl/SUMO acceptor lysine

NB

Nuclear body

FRAP

Fluorescence recovery after photobleaching

MS

Mass spectrometry

GFP

Green fluorescence protein

Notes

Acknowledgements

The authors are indebted to Prof. Angus I. Lamond, Prof. Greg Matera, Prof. Maria Carmo-Fonseca and Prof. Larry Gerace for reagents, and Renate Voit (DKFZ) for generously providing plasmids. We would also like to acknowledge Dr. Thomas Ruppert and his team from the ZMBH (Zentrum für Molekulare Biologie der Universität Heidelberg) Mass Spectrometry Core Facility and Dr. Fidel Madrazo from the IDIVAL (Instituto de Investigación Sanitaria Valdecilla) Microscopy Facility. This work was supported by the following Grants: “Dirección General de Investigación” (BFU2014-54754-P) and “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas” (CIBERNED; CB06/05/0037) Spain. V. Lafarga was supported by a Marie Curie Intra-European Fellowship (mirnaAGOddr, Grant nr. 300384). O. Tapia was supported by a Postdoctoral Fellowship from SMA Europe and FundAME (Spain).

Author contributions

VL, OT and SS conceived experiments, performed transfection experiments and co-immunoprecipitation assays, VL, SS, and GS performed mass spectrometry analysis, RB performed mutagenesis, ML, MTB and GS designed experiments and wrote the manuscript.

Supplementary material

18_2017_2638_MOESM1_ESM.tif (47.9 mb)
Supplementary material 1 (TIFF 49085 kb) Figure A1. Expression of CBP induces cytoplasmic accumulation of endogenous SMN and interferes with CB biogenesis. (a) HEK293T cells were transfected with GFP or GFP–SMNwt alone or together with the CBP-HA. GFP-binder beads were used to purify GFP–SMNwt from cell lysates, and acetylation was examined using an anti-acetyl lysine (AcK) antibody by western blot analysis (b-c) MCF7 cells were transfected with either empty vector pcDNA-HA (b) or with CBP-HA (c) and 24 h later fixed and stained with anti-SMN. (d) quantitative and densitometric analysis of the CB number per cell (left) and cytoplasmic endogenous SMN fluorescence signal (right) in cells expressing empty vector (gray) or CBP-HA (orange). (e) Surface representation of the Tudor domain structure. Blue and red colors indicate positive and negative electrostatic surface potential, respectively. (f) Morphological differentiation of motor neurons NSC-34 cells by immunolabeling of the β-Tubulin isoform III. (g) NSC-34 cells were transfected with GFP–SMNwt and, after 24 h differentiation, were either left untreated or treated with TSA at 100 nM for 24 h. (h) NSC-34 cells were transfected with CBP-HA and, after differentiation, fixed and stained with anti-SMN. Scale bars: 10 μm (b, c) and 5 µm (f–h). Quantitative and densitometric analysis were performed in at least three independent experiments per group (n = 3). Each scatter dot plot represents the CB number per cells and cytoplasmic SMN intensity measured from at least 150 cells from each group. The horizontal black line within the scatter dot plots represents the mean for each group; ***p < 0.0001
18_2017_2638_MOESM2_ESM.tif (30 mb)
Supplementary material 2 (TIFF 30672 kb) Figure A2. (a) MCF7 cells expressing GFP–SMNK119R were untreated (left panel) treated with TSA (100 nM) for 16 h and fixed (middle panel) or allowed to recover in normal medium for 24 h (right panel). Cells were stained with anti-Coilin antibody. (b) quantitative analysis of the mean number of CBs per GFP–SMNK119R-positive cell, comparing non-treated (blue), TSA-treated (red) or after recovery for 24 h (yellow). (c) densitometric analysis of cytoplasmic fluorescence signal of GFP–SMNK119R (dark red) compared to GFP–SMNwt (red) in TSA-treated cells. (g-h) MCF7 cells co-transfected with GFP–SMNK119R and the empty vector pcDNA-HA (d) or CBP-HA (e) were fixed and stained with anti-HA antibody. (f) The graph represents the quantitative analysis of the mean CB number comparing cells co-expressing GFP–SMNK119R and the empty vector pcDNA-HA (blue) or CBP-HA (dark blue). (g) citoplasmic fluorescence signal (right) in cells co-expressing either GFP–SMNwt (orange) or GFP–SMNK119R (brown) and CBP-HA (orange). Scale bar 10 μm. Quantitative and densitometric analysis were performed in at least three independent experiments per group (n = 3). Each scatter dot plot represents the CB number per cells and cytoplasmic GFP–SMN intensity measured from at least 150 cells from each group. The horizontal black line within the scatter dot plots represents the mean for each group; *p < 0.01, ***p < 0.0001; n.s non significant data
18_2017_2638_MOESM3_ESM.docx (106 kb)
Supplementary material 3 (DOCX 105 kb) Table A1. List of proteins enriched on GFP–SMNwt sample versus GFP. The cutoff was set for those proteins that were enriched more than 50-folds on the GFP–SMNwt sample (versus GFP) and are represented for more 4 unique peptides
18_2017_2638_MOESM4_ESM.docx (116 kb)
Supplementary material 4 (DOCX 115 kb) Table A2. List of proteins enriched on GFP–SMNK119R sample versus GFP. The cutoff was set for those proteins that were enriched more than 50-folds on the GFP–SMNK119R sample (versus GFP) and are represented for more 4 unique peptides

References

  1. 1.
    Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300. doi: 10.1146/annurev.cellbio.16.1.273 CrossRefPubMedGoogle Scholar
  2. 2.
    Lafarga M, Casafont I, Bengoechea R et al (2009) Cajal’s contribution to the knowledge of the neuronal cell nucleus. Chromosoma 118:437–443. doi: 10.1007/s00412-009-0212-x CrossRefPubMedGoogle Scholar
  3. 3.
    Cioce M, Lamond AI (2005) Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131. doi: 10.1146/annurev.cellbio.20.010403.103738 CrossRefPubMedGoogle Scholar
  4. 4.
    Stanek D, Neugebauer KM (2006) The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma 115:343–354. doi: 10.1007/s00412-006-0056-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Machyna M, Kehr S, Straube K et al (2014) The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol Cell 56:389–399. doi: 10.1016/j.molcel.2014.10.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Nizami Z, Deryusheva S, Gall JG (2010) The Cajal body and histone locus body. Cold Spring Harb Perspect Biol 2:a000653. doi: 10.1101/cshperspect.a000653 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Machyna M, Heyn P, Neugebauer KM (2013) Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA 4:17–34. doi: 10.1002/wrna.1139 CrossRefPubMedGoogle Scholar
  8. 8.
    Novotný I, Malinová A, Stejskalová E et al (2015) SART3-dependent accumulation of incomplete spliceosomal snRNPs in Cajal bodies. Cell Rep. doi: 10.1016/j.celrep.2014.12.030 PubMedGoogle Scholar
  9. 9.
    Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298:1775–1779. doi: 10.1126/science.1074962 CrossRefPubMedGoogle Scholar
  10. 10.
    Li DK, Tisdale S, Lotti F, Pellizzoni L (2014) SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol 32:22–29. doi: 10.1016/j.semcdb.2014.04.026 CrossRefPubMedGoogle Scholar
  11. 11.
    Lemm I, Girard C, Kuhn AN et al (2006) Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell 17:3221–3231. doi: 10.1091/mbc.E06-03-0247 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15:108–121. doi: 10.1038/nrm3742 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Massenet S, Pellizzoni L, Paushkin S et al (2002) The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway. Mol Cell Biol 22:6533–6541CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Raimer AC, Gray KM, Matera AG (2017) SMN—a chaperone for nuclear RNP social occasions? RNA Biol 14:701–711. doi: 10.1080/15476286.2016.1236168 CrossRefPubMedGoogle Scholar
  15. 15.
    Sleeman J (2007) A regulatory role for CRM1 in the multi-directional trafficking of splicing snRNPs in the mammalian nucleus. J Cell Sci 120:1540–1550. doi: 10.1242/jcs.001529 CrossRefPubMedGoogle Scholar
  16. 16.
    Darzacq X, Jády BE, Verheggen C et al (2002) Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746–2756. doi: 10.1093/emboj/21.11.2746 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Strzelecka M, Trowitzsch S, Weber G et al (2010) Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat Struct Mol Biol 17:403–409. doi: 10.1038/nsmb.1783 CrossRefPubMedGoogle Scholar
  18. 18.
    Sleeman JE, Lamond AI (1999) Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 9:1065–1074CrossRefPubMedGoogle Scholar
  19. 19.
    Tisdale S, Lotti F, Saieva L et al (2013) SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3′-end formation of histone mRNAs. Cell Rep 5:1187–1195. doi: 10.1016/j.celrep.2013.11.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3:97–110. doi: 10.1006/nbdi.1996.0010 CrossRefPubMedGoogle Scholar
  21. 21.
    Lefebvre S, Bürglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165CrossRefPubMedGoogle Scholar
  22. 22.
    Burghes AHM, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609. doi: 10.1038/nrn2670 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ruggiu M, McGovern VL, Lotti F et al (2012) A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 32:126–138. doi: 10.1128/MCB.06077-11 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Boulisfane N, Choleza M, Rage F et al (2011) Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient. Hum Mol Genet 20:641–648. doi: 10.1093/hmg/ddq508 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang Z, Lotti F, Dittmar K et al (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133:585–600. doi: 10.1016/j.cell.2008.03.031 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Doktor TK, Hua Y, Andersen HS et al (2017) RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res 45:395–416. doi: 10.1093/nar/gkw731 CrossRefPubMedGoogle Scholar
  27. 27.
    Tapia O, Bengoechea R, Palanca A et al (2012) Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 137:657–667. doi: 10.1007/s00418-012-0921-8 CrossRefPubMedGoogle Scholar
  28. 28.
    Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI (1992) Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Biol 117:1–14CrossRefPubMedGoogle Scholar
  29. 29.
    Lotti F, Imlach WL, Saieva L et al (2012) An SMN-dependent U12 splicing event essential for motor circuit function. Cell 151:440–454. doi: 10.1016/j.cell.2012.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dundr M (2012) Nuclear bodies: multifunctional companions of the genome. Curr Opin Cell Biol 24:415–422. doi: 10.1016/j.ceb.2012.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang R, So BR, Li P et al (2011) Structure of a key intermediate of the SMN complex reveals Gemin2’s crucial function in snRNP assembly. Cell 146:384–395. doi: 10.1016/j.cell.2011.06.043 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cauchi RJ (2010) SMN and Gemins: “we are family” … or are we?: insights into the partnership between Gemins and the spinal muscular atrophy disease protein SMN. BioEssays 32:1077–1089. doi: 10.1002/bies.201000088 CrossRefPubMedGoogle Scholar
  33. 33.
    Boisvert F-M, Côté J, Boulanger M-C et al (2002) Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol 159:957–969. doi: 10.1083/jcb.200207028 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hebert MD, Shpargel KB, Ospina JK et al (2002) Coilin methylation regulates nuclear body formation. Dev Cell 3:329–337CrossRefPubMedGoogle Scholar
  35. 35.
    Hebert MD, Poole AR (2017) Toward an understanding of regulating Cajal body activity by protein modification. RNA Biol 14:761–778. doi: 10.1080/15476286.2016.1243649 CrossRefPubMedGoogle Scholar
  36. 36.
    Hearst SM, Gilder AS, Negi SS et al (2009) Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines. J Cell Sci 122:1872–1881. doi: 10.1242/jcs.044040 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Han K-J, Foster D, Harhaj EW et al (2016) Monoubiquitination of survival motor neuron regulates its cellular localization and Cajal body integrity. Hum Mol Genet 25:1392–1405. doi: 10.1093/hmg/ddw021 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Husedzinovic A, Neumann B, Reymann J et al (2015) The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization. Mol Biol Cell 26:161–171. doi: 10.1091/mbc.E14-06-1151 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tapia O, Lafarga V, Bengoechea R et al (2014) The SMN Tudor SIM-like domain is key to SmD1 and coilin interactions and to Cajal body biogenesis. J Cell Sci 127:939–946. doi: 10.1242/jcs.138537 CrossRefPubMedGoogle Scholar
  40. 40.
    Choudhary C, Weinert BT, Nishida Y et al (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550. doi: 10.1038/nrm3841 CrossRefPubMedGoogle Scholar
  41. 41.
    Ullmann R, Chien CD, Avantaggiati ML, Muller S (2012) An acetylation switch regulates SUMO-dependent protein interaction networks. Mol Cell 46:759–770. doi: 10.1016/j.molcel.2012.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Seo J, Howell MD, Singh NN, Singh RN (2013) Spinal muscular atrophy: an update on therapeutic progress. Biochim Biophys Acta 1832:2180–2190. doi: 10.1016/j.bbadis.2013.08.005 CrossRefPubMedGoogle Scholar
  43. 43.
    Cashman NR, Durham HD, Blusztajn JK et al (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221. doi: 10.1002/aja.1001940306 CrossRefPubMedGoogle Scholar
  44. 44.
    Sleeman JE, Trinkle-Mulcahy L, Prescott AR et al (2003) Cajal body proteins SMN and Coilin show differential dynamic behaviour in vivo. J Cell Sci 116:2039–2050. doi: 10.1242/jcs.00400 CrossRefPubMedGoogle Scholar
  45. 45.
    Sharma S, Poetz F, Bruer M et al (2016) Acetylation-Dependent Control of Global Poly(A) RNA Degradation by CBP/p300 and HDAC1/2. Mol Cell 63:927–938. doi: 10.1016/j.molcel.2016.08.030 CrossRefPubMedGoogle Scholar
  46. 46.
    Sandler H, Kreth J, Timmers HTM, Stoecklin G (2011) Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39:4373–4386. doi: 10.1093/nar/gkr011 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  48. 48.
    Tisdale S, Pellizzoni L (2015) Disease mechanisms and therapeutic approaches in spinal muscular atrophy. J Neurosci 35:8691–8700. doi: 10.1523/JNEUROSCI.0417-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lafarga M, Tapia O, Romero AM, Berciano MT (2017) Cajal bodies in neurons. RNA Biol 14:712–725. doi: 10.1080/15476286.2016.1231360 CrossRefPubMedGoogle Scholar
  50. 50.
    Benavente F, Pinto C, Parada M et al (2012) Bone morphogenetic protein 2 inhibits neurite outgrowth of motor neuron-like NSC-34 cells and up-regulates its type II receptor. J Neurochem 122:594–604. doi: 10.1111/j.1471-4159.2012.07795.x CrossRefPubMedGoogle Scholar
  51. 51.
    Turner BJ, Parkinson NJ, Davies KE, Talbot K (2009) Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model. Neurobiol Dis 34:511–517. doi: 10.1016/j.nbd.2009.03.005 CrossRefPubMedGoogle Scholar
  52. 52.
    Kariya S, Re DB, Jacquier A et al (2012) Mutant superoxide dismutase 1 (SOD1), a cause of amyotrophic lateral sclerosis, disrupts the recruitment of SMN, the spinal muscular atrophy protein to nuclear Cajal bodies. Hum Mol Genet 21:3421–3434. doi: 10.1093/hmg/dds174 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Selenko P, Sprangers R, Stier G et al (2001) SMN tudor domain structure and its interaction with the Sm proteins. Nat Struct Biol 8:27–31. doi: 10.1038/83014 CrossRefPubMedGoogle Scholar
  54. 54.
    Renvoisé B, Khoobarry K, Gendron M-C et al (2006) Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells. J Cell Sci 119:680–692. doi: 10.1242/jcs.02782 CrossRefPubMedGoogle Scholar
  55. 55.
    Tripsianes K, Madl T, Machyna M et al (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18:1414–1420. doi: 10.1038/nsmb.2185 CrossRefPubMedGoogle Scholar
  56. 56.
    Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016. doi: 10.1038/nrm2277 CrossRefPubMedGoogle Scholar
  57. 57.
    Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J 15:3555–3565PubMedPubMedCentralGoogle Scholar
  58. 58.
    Navascues J, Berciano MT, Tucker KE et al (2004) Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis. Chromosoma 112:398–409. doi: 10.1007/s00412-004-0285-5 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612. doi: 10.1038/nrm1172 CrossRefPubMedGoogle Scholar
  60. 60.
    Bäumer D, Lee S, Nicholson G et al (2009) Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 5:e1000773. doi: 10.1371/journal.pgen.1000773 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Newell-Litwa KA, Horwitz R, Lamers ML (2015) Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 8:1495–1515. doi: 10.1242/dmm.022103 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Burnett BG, Muñoz E, Tandon A et al (2009) Regulation of SMN protein stability. Mol Cell Biol 29:1107–1115. doi: 10.1128/MCB.01262-08 CrossRefPubMedGoogle Scholar
  63. 63.
    Avila AM, Burnett BG, Taye AA et al (2007) Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 117:659–671. doi: 10.1172/JCI29562 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Narver HL, Kong L, Burnett BG et al (2008) Sustained improvement of spinal muscular atrophy mice treated with trichostatin A plus nutrition. Ann Neurol 64:465–470. doi: 10.1002/ana.21449 CrossRefPubMedGoogle Scholar
  65. 65.
    Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972. doi: 10.1016/j.neuron.2004.06.002 CrossRefPubMedGoogle Scholar
  66. 66.
    de Thé H, Le Bras M, Lallemand-Breitenbach V (2012) Acute promyelocytic leukemia, arsenic, and PML bodies. J Cell Biol 198:11–21. doi: 10.1083/jcb.201112044 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Guan D, Lim JH, Peng L et al (2014) Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death. Cell Death Dis 5:e1340. doi: 10.1038/cddis.2014.185 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sahin U, de Thé H, Lallemand-Breitenbach V (2014) PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 5:499–507. doi: 10.4161/19491034.2014.970104 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bischof O, Kirsh O, Pearson M et al (2002) Deconstructing PML-induced premature senescence. EMBO J 21:3358–3369. doi: 10.1093/emboj/cdf341 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rokudai S, Laptenko O, Arnal SM et al (2013) MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Natl Acad Sci USA 110:3895–3900. doi: 10.1073/pnas.1300490110 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Pearson M, Carbone R, Sebastiani C et al (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406:207–210. doi: 10.1038/35018127 CrossRefPubMedGoogle Scholar
  72. 72.
    Berciano MT, Novell M, Villagra NT et al (2007) Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons. J Struct Biol 158:410–420. doi: 10.1016/j.jsb.2006.12.008 CrossRefPubMedGoogle Scholar
  73. 73.
    Sun J, Xu H, Subramony SH, Hebert MD (2005) Interactions between coilin and PIASy partially link Cajal bodies to PML bodies. J Cell Sci 118:4995–5003. doi: 10.1242/jcs.02613 CrossRefPubMedGoogle Scholar
  74. 74.
    Navascues J, Bengoechea R, Tapia O et al (2008) SUMO-1 transiently localizes to Cajal bodies in mammalian neurons. J Struct Biol 163:137–146. doi: 10.1016/j.jsb.2008.04.013 CrossRefPubMedGoogle Scholar
  75. 75.
    Schulz S, Chachami G, Kozaczkiewicz L et al (2012) Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep 13:930–938. doi: 10.1038/embor.2012.125 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hebert MD, Szymczyk PW, Shpargel KB, Matera AG (2001) Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev 15:2720–2729. doi: 10.1101/gad.908401 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Tucker KE, Berciano MT, Jacobs EY et al (2001) Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 154:293–307. doi: 10.1083/jcb.200104083 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lefebvre S, Burlet P, Liu Q et al (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269. doi: 10.1038/ng0797-265 CrossRefPubMedGoogle Scholar
  79. 79.
    Novotný I, Blažíková M, Staněk D et al (2011) In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies. Mol Biol Cell 22:513–523. doi: 10.1091/mbc.E10-07-0560 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kwon DY, Dimitriadi M, Terzic B et al (2013) The E3 ubiquitin ligase mind bomb 1 ubiquitinates and promotes the degradation of survival of motor neuron protein. Mol Biol Cell 24:1863–1871. doi: 10.1091/mbc.E13-01-0042 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Chang H-C, Hung W-C, Chuang Y-J, Jong Y-J (2004) Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway. Neurochem Int 45:1107–1112. doi: 10.1016/j.neuint.2004.04.005 CrossRefPubMedGoogle Scholar
  82. 82.
    Kouzarides T (2007) SnapShot: histone-modifying enzymes. Cell 131(4):822. doi: 10.1016/j.cell.2007.11.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of Genomic Instability“Centro Nacional de Investigaciones Oncológicas” (CNIO)MadridSpain
  2. 2.Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
  3. 3.Department of Anatomy and Cell Biology, “Centro de Investigación en Red de Enfermedades Neurodegenerativas” (CIBERNED)University of Cantabria-IDIVALSantanderSpain
  4. 4.Department of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  5. 5.Center for Molecular Biology of Heidelberg University (ZMBH)MannheimGermany
  6. 6.German Cancer Research Center (DKFZ), DKFZ-ZMBH AllianceMannheimGermany
  7. 7.Department of Neurology, The Hope Center for Neurological DiseasesSchool of Medicine of Washington UniversitySt. LouisUSA

Personalised recommendations