Skip to main content

Advertisement

Log in

Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BER:

Base excision repair

BPEC:

Breast primary epithelial cell

CKI:

Cyclin-dependent kinase inhibitor

DDR:

DNA damage response

DSB:

Double-strand break

EMT:

Epithelium-to-mesenchyme transition

HMEC:

Human mammary epithelial cell

NHEK:

Normal human epidermal keratinocyte

NHOK:

Normal human oral keratinocyte

OIS:

Oncogene-induced senescence

PARP1:

Poly(ADP)ribose polymerase 1

PD:

Population doubling

PSNE:

Post-senescence neoplastic emergence

ROS:

Reactive oxygen species

RS:

Replicative senescence

SA-β-Gal:

Senescence-associated-β-galactosidase activity

SAHF:

Senescence-associated heterochromatin foci

SASP:

Senescence-associated secretory phenotype

SIPS:

Stress-induced premature senescence

SMS:

Senescence messaging secretome

SSB:

Single-strand break

SSBR:

Single-strand break repair

TIS:

Therapy-induced senescence

UPR:

Unfolded protein response

References

  1. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  2. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  3. Vaziri H, Benchimol S (1996) From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 31:295–301

    Article  CAS  PubMed  Google Scholar 

  4. Hezel AF, Bardeesy N, Maser RS (2005) Telomere induced senescence: end game signaling. Curr Mol Med 5:145–152

    Article  CAS  PubMed  Google Scholar 

  5. Deng Y, Chan SS, Chang S (2008) Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8:450–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Criscione SW, Teo YV, Neretti N (2016) The chromatin landscape of cellular senescence. Trends Genet 32:751–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuwano K, Araya J, Hara H, Minagawa S, Takasaka N, Ito S, Kobayashi K, Nakayama K (2016) Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig 54:397–406

    Article  PubMed  Google Scholar 

  8. Parry AJ, Narita M (2016) Old cells, new tricks: chromatin structure in senescence. Mamm Genome 27:320–331

    Article  PubMed Central  PubMed  Google Scholar 

  9. Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wiley CD, Campisi J (2016) From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab 23:1013–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Urbanelli L, Buratta S, Sagini K, Tancini B, Emiliani C (2016) Extracellular vesicles as new players in cellular senescence. Int J Mol Sci 17:1408

    Article  PubMed Central  Google Scholar 

  12. Demaria M, Desprez PY, Campisi J, Velarde MC (2015) Cell autonomous and non-autonomous effects of senescent cells in the skin. J Invest Dermatol 135:1722–1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Panebianco C, Oben JA, Vinciguerra M, Pazienza V (2016) C. Clin Exp Med

  14. Adnot S, Amsellem V, Boyer L, Marcos E, Saker M, Houssaini A, Kebe K, Dagouassat M, Lipskaia L, Boczkowski J (2015) Telomere dysfunction and cell senescence in chronic lung diseases: therapeutic potential. Pharmacol Ther 153:125–134

    Article  CAS  PubMed  Google Scholar 

  15. Tan FC, Hutchison ER, Eitan E, Mattson MP (2014) Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology 15:643–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408

    Article  CAS  PubMed  Google Scholar 

  17. Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Foster SA, Galloway DA (1996) Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12:1773–1779

    CAS  PubMed  Google Scholar 

  19. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, Bouali F, Sabatier L, Wernert N, Pinte S, Gilson E, Pourtier A, Pluquet O, Abbadie C (2016) Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun 7:10399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gosselin K, Martien S, Pourtier A, Vercamer C, Ostoich P, Morat L, Sabatier L, Duprez L, T’Kint de Roodenbeke C, Gilson E, Malaquin N, Wernert N, Slijepcevic P, Ashtari M, Chelli F, Deruy E, Vandenbunder B, De Launoit Y, Abbadie C (2009) Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res 69:7917–7925

    Article  CAS  PubMed  Google Scholar 

  21. Stampfer MR, Bartley JC (1985) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 82:2394–2398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Brenner AJ, Stampfer MR, Aldaz CM (1998) Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17:199–205

    Article  CAS  PubMed  Google Scholar 

  23. Jang DH, Bhawal UK, Min HK, Kang HK, Abiko Y, Min BM (2015) A transcriptional roadmap to the senescence and differentiation of human oral keratinocytes. J Gerontol A Biol Sci Med Sci 70:20–32

    Article  CAS  PubMed  Google Scholar 

  24. Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633–637

    Article  CAS  PubMed  Google Scholar 

  25. Rheinwald JG, Hahn WC, Ramsey MR, Wu JY, Guo Z, Tsao H, De Luca M, Catricala C, O’Toole KM (2002) A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol 22:5157–5172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Feijoo P, Terradas M, Soler D, Dominguez D, Tusell L, Genesca A (2016) Breast primary epithelial cells that escape p16-dependent stasis enter a telomere-driven crisis state. Breast Cancer Res 18:7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Martin N, Salazar-Cardozo C, Vercamer C, Ott L, Marot G, Slijepcevic P, Abbadie C, Pluquet O (2014) Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. Mol Cancer 13:151

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Malaquin N, Vercamer C, Bouali F, Martien S, Deruy E, Wernert N, Chwastyniak M, Pinet F, Abbadie C, Pourtier A (2013) Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 8:e63607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gosselin K, Deruy E, Martien S, Vercamer C, Bouali F, Dujardin T, Slomianny C, Houel-Renault L, Chelli F, De Launoit Y, Abbadie C (2009) Senescent keratinocytes die by autophagic programmed cell death. Am J Pathol 174:423–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Deruy E, Nassour J, Martin N, Vercamer C, Malaquin N, Bertout J, Chelli F, Pourtier A, Pluquet O, Abbadie C (2014) Level of macroautophagy drives senescent keratinocytes into cell death or neoplastic evasion. Cell Death Dis 5:e1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Nickoloff BJ, Lingen MW, Chang BD, Shen M, Swift M, Curry J, Bacon P, Bodner B, Roninson IB (2004) Tumor suppressor maspin is up-regulated during keratinocyte senescence, exerting a paracrine antiangiogenic activity. Cancer Res 64:2956–2961

    Article  CAS  PubMed  Google Scholar 

  32. Bertram C, Hass R (2008) MMP-7 is involved in the aging of primary human mammary epithelial cells (HMEC). Exp Gerontol 43:209–217

    Article  CAS  PubMed  Google Scholar 

  33. Sandhu C, Donovan J, Bhattacharya N, Stampfer M, Worland P, Slingerland J (2000) Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene 19:5314–5323

    Article  CAS  PubMed  Google Scholar 

  34. Norsgaard H, Clark BF, Rattan SI (1996) Distinction between differentiation and senescence and the absence of increased apoptosis in human keratinocytes undergoing cellular aging in vitro. Exp Gerontol 31:563–570

    Article  CAS  PubMed  Google Scholar 

  35. Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, Iglehart JD, Weinberg RA (2007) Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 12:160–170

    Article  CAS  PubMed  Google Scholar 

  36. Hammond SL, Ham RG, Stampfer MR (1984) Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci USA 81:5435–5439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Stampfer MR, Yaswen P (2000) Culture models of human mammary epithelial cell transformation. J Mammary Gland Biol Neoplasia 5:365–378

    Article  CAS  PubMed  Google Scholar 

  38. Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS, Wyrobek AJ, Stampfer MR (2009) Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. Cancer Res 69:7557–7568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Fu B, Quintero J, Baker CC (2003) Keratinocyte growth conditions modulate telomerase expression, senescence, and immortalization by human papillomavirus type 16 E6 and E7 oncogenes. Cancer Res 63:7815–7824

    CAS  PubMed  Google Scholar 

  40. Bekker-Jensen S, Mailand N (2010) Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst) 9:1219–1228

    Article  CAS  Google Scholar 

  41. Rossiello F, Herbig U, Longhese MP, Fumagalli M, d’Adda di Fagagna F (2014) Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 26:89–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vaziri H, Benchimol S (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 8:279–282

    Article  CAS  PubMed  Google Scholar 

  43. Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    Article  CAS  PubMed  Google Scholar 

  44. Lee G, Park BS, Han SE, Oh JE, You YO, Baek JH, Kim GS, Min BM (2000) Concurrence of replicative senescence and elevated expression of p16(INK4A) with subculture-induced but not calcium-induced differentiation in normal human oral keratinocytes. Arch Oral Biol 45:809–818

    Article  CAS  PubMed  Google Scholar 

  45. Foster SA, Wong DJ, Barrett MT, Galloway DA (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol 18:1793–1801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Garbe J, Wong M, Wigington D, Yaswen P, Stampfer MR (1999) Viral oncogenes accelerate conversion to immortality of cultured conditionally immortal human mammary epithelial cells. Oncogene 18:2169–2180

    Article  CAS  PubMed  Google Scholar 

  47. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88

    Article  CAS  PubMed  Google Scholar 

  48. Kim RH, Kang MK, Kim T, Yang P, Bae S, Williams DW, Phung S, Shin KH, Hong C, Park NH (2015) Regulation of p53 during senescence in normal human keratinocytes. Aging Cell 14:838–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP, Rheinwald JG (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20:1436–1447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Stampfer MR, Bodnar A, Garbe J, Wong M, Pan A, Villeponteau B, Yaswen P (1997) Gradual phenotypic conversion associated with immortalization of cultured human mammary epithelial cells. Mol Biol Cell 8:2391–2405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Klingelhutz AJ, Foster SA, McDougall JK (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380:79–82

    Article  CAS  PubMed  Google Scholar 

  52. Stoppler H, Hartmann DP, Sherman L, Schlegel R (1997) The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J Biol Chem 272:13332–13337

    Article  CAS  PubMed  Google Scholar 

  53. Howie HL, Katzenellenbogen RA, Galloway DA (2009) Papillomavirus E6 proteins. Virology 384:324–334

    Article  CAS  PubMed  Google Scholar 

  54. Band V, Zajchowski D, Kulesa V, Sager R (1990) Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc Natl Acad Sci USA 87:463–467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Shay JW, Wright WE, Brasiskyte D, Van der Haegen BA (1993) E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8:1407–1413

    CAS  PubMed  Google Scholar 

  56. Garbe JC, Vrba L, Sputova K, Fuchs L, Novak P, Brothman AR, Jackson M, Chin K, LaBarge MA, Watts G, Futscher BW, Stampfer MR (2014) Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations. Cell Cycle 13:3423–3435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Bryson BL, Junk DJ, Cipriano R, Jackson MW (2016) STAT3-mediated SMAD3 activation underlies oncostatin M-induced senescence. Cell Cycle 16:319–334

    Article  PubMed  CAS  Google Scholar 

  58. Garbe JC, Holst CR, Bassett E, Tlsty T, Stampfer MR (2007) Inactivation of p53 function in cultured human mammary epithelial cells turns the telomere-length dependent senescence barrier from agonescence into crisis. Cell Cycle 6:1927–1936

    Article  CAS  PubMed  Google Scholar 

  59. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    Article  CAS  PubMed  Google Scholar 

  60. Kang MK, Kameta A, Shin KH, Baluda MA, Park NH (2004) Senescence occurs with hTERT repression and limited telomere shortening in human oral keratinocytes cultured with feeder cells. J Cell Physiol 199:364–370

    Article  CAS  PubMed  Google Scholar 

  61. Huschtscha LI, Noble JR, Neumann AA, Moy EL, Barry P, Melki JR, Clark SJ, Reddel RR (1998) Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res 58:3508–3512

    CAS  PubMed  Google Scholar 

  62. Ramirez RD, Herbert BS, Vaughan MB, Zou Y, Gandia K, Morales CP, Wright WE, Shay JW (2003) Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene 22:433–444

    Article  CAS  PubMed  Google Scholar 

  63. Miller J, Dakic A, Chen R, Palechor-Ceron N, Dai Y, Kallakury B, Schlegel R, Liu X (2013) HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog 9:e1003284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, Campisi J, Wazer DE, Band V (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62:4736–4745

    CAS  PubMed  Google Scholar 

  65. Dabelsteen S, Hercule P, Barron P, Rice M, Dorsainville G, Rheinwald JG (2009) Epithelial cells derived from human embryonic stem cells display p16INK4A senescence, hypermotility, and differentiation properties shared by many P63+ somatic cell types. Stem Cells 27:1388–1399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, Keller PJ, Glover E, Richardson AL, Cowan J, Toland AE, Ravichandran K, Riethman H, Naber SP, Naar AM, Blasco MA, Hinds PW, Kuperwasser C (2015) Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun 6:7505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Maurelli R, Tinaburri L, Gangi F, Bondanza S, Severi AL, Scarponi C, Albanesi C, Mesiti G, Guerra L, Capogrossi MC, Dellambra E (2016) The role of oncogenic Ras in human skin tumorigenesis depends on the clonogenic potential of the founding keratinocytes. J Cell Sci 129:1003–1017

    Article  CAS  PubMed  Google Scholar 

  68. Olsen CL, Gardie B, Yaswen P, Stampfer MR (2002) Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene 21:6328–6339

    Article  CAS  PubMed  Google Scholar 

  69. Jarrard DF, Sarkar S, Shi Y, Yeager TR, Magrane G, Kinoshita H, Nassif N, Meisner L, Newton MA, Waldman FM, Reznikoff CA (1999) p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res 59:2957–2964

    CAS  PubMed  Google Scholar 

  70. Harada H, Nakagawa H, Oyama K, Takaoka M, Andl CD, Jacobmeier B, von Werder A, Enders GH, Opitz OG, Rustgi AK (2003) Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a inactivation. Mol Cancer Res 1:729–738

    CAS  PubMed  Google Scholar 

  71. Schwarze SR, Shi Y, Fu VX, Watson PA, Jarrard DF (2001) Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells. Oncogene 20:8184–8192

    Article  CAS  PubMed  Google Scholar 

  72. de Carne Trecesson S, Guillemin Y, Belanger A, Bernard AC, Preisser L, Ravon E, Gamelin E, Juin P, Barre B, Coqueret O (2011) Escape from p21-mediated oncogene-induced senescence leads to cell dedifferentiation and dependence on anti-apoptotic Bcl-xL and MCL1 proteins. J Biol Chem 286:12825–12838

    Article  CAS  Google Scholar 

  73. Cheung M, Testa JR (2013) Diverse mechanisms of AKT pathway activation in human malignancy. Curr Cancer Drug Targets 13:234–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Verma S, Goyal S, Jamal S, Singh A, Grover A (2016) Hsp90: friends, clients and natural foes. Biochimie 127:227–240

    Article  CAS  PubMed  Google Scholar 

  75. Friguet B (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 580:2910–2916

    Article  CAS  PubMed  Google Scholar 

  76. Tsakiri EN, Trougakos IP (2015) The amazing ubiquitin-proteasome system: structural components and implication in aging. Int Rev Cell Mol Biol 314:171–237

    Article  PubMed  Google Scholar 

  77. Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10:205–215

    Article  CAS  PubMed  Google Scholar 

  78. Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat Med 21:1406–1415

    Article  CAS  PubMed  Google Scholar 

  79. Pluquet O, Pourtier A, Abbadie C (2014) The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am J Physiol Cell Physiol 308:C415–C425

    Article  PubMed  CAS  Google Scholar 

  80. Zhu B, Ferry CH, Markell LK, Blazanin N, Glick AB, Gonzalez FJ, Peters JM (2014) The nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) promotes oncogene-induced cellular senescence through repression of endoplasmic reticulum stress. J Biol Chem 289:20102–20119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Liu J, Huang K, Cai GY, Chen XM, Yang JR, Lin LR, Yang J, Huo BG, Zhan J, He YN (2014) Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell Signal 26:110–121

    Article  PubMed  CAS  Google Scholar 

  82. Jackson MP, Hewitt EW (2016) Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays Biochem 60:173–180

    Article  PubMed Central  PubMed  Google Scholar 

  83. Ariosa AR, Klionsky DJ (2016) Autophagy core machinery: overcoming spatial barriers in neurons. J Mol Med (Berl) 94:1217–1227

    Article  Google Scholar 

  84. Mijaljica D, Prescott M, Devenish RJ (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7:673–682

    Article  CAS  PubMed  Google Scholar 

  85. Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104

    Article  CAS  PubMed  Google Scholar 

  86. Xilouri M, Stefanis L (2016) Chaperone mediated autophagy in aging: starve to prosper. Ageing Res Rev 32:13–21

    Article  CAS  PubMed  Google Scholar 

  87. Grasso D, Vaccaro MI (2014) Macroautophagy and the oncogene-induced senescence. Front Endocrinol (Lausanne) 5:157

    Google Scholar 

  88. Hoare M, Young AR, Narita M (2011) Autophagy in cancer: having your cake and eating it. Semin Cancer Biol 21:397–404

    CAS  PubMed  Google Scholar 

  89. Baisantry A, Bhayana S, Wrede C, Hegermann J, Haller H, Melk A, Schmitt R (2016) The impact of autophagy on the development of senescence in primary tubular epithelial cells. Cell Cycle 15:2973–2979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y (2010) Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis. Lab Invest 90:835–843

    Article  CAS  PubMed  Google Scholar 

  91. Fujii S, Hara H, Araya J, Takasaka N, Kojima J, Ito S, Minagawa S, Yumino Y, Ishikawa T, Numata T, Kawaishi M, Hirano J, Odaka M, Morikawa T, Nishimura S, Nakayama K, Kuwano K (2012) Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology 1:630–641

    Article  PubMed Central  PubMed  Google Scholar 

  92. Deruy E, Gosselin K, Vercamer C, Martien S, Bouali F, Slomianny C, Bertout J, Bernard D, Pourtier A, Abbadie C (2010) MnSOD upregulation induces autophagic programmed cell death in senescent keratinocytes. PLoS One 5:e12712

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Elgendy M, Sheridan C, Brumatti G, Martin SJ (2011) Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 42:23–35

    Article  CAS  PubMed  Google Scholar 

  94. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  95. Muller M (2009) Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal 11:59–98

    Article  CAS  PubMed  Google Scholar 

  96. Bernard D, Gosselin K, Monte D, Vercamer C, Bouali F, Pourtier A, Vandenbunder B, Abbadie C (2004) Involvement of Rel/NF-κB transcription factors in keratinocyte senescence. Cancer Res 64:472–481

    Article  CAS  PubMed  Google Scholar 

  97. Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773:1358–1375

    Article  CAS  PubMed  Google Scholar 

  98. Garcia-Cano J, Roche O, Cimas FJ, Pascual-Serra R, Ortega-Muelas M, Fernandez-Aroca DM, Sanchez-Prieto R (2016) p38MAPK and chemotherapy: we always need to hear both sides of the story. Front Cell Dev Biol 4:69

    Article  PubMed Central  PubMed  Google Scholar 

  99. Reinhardt HC, Yaffe MB (2009) Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21:245–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Debacq-Chainiaux F, Boilan E, Dedessus Le Moutier J, Weemaels G, Toussaint O (2010) p38(MAPK) in the senescence of human and murine fibroblasts. Adv Exp Med Biol 694:126–137

    Article  CAS  PubMed  Google Scholar 

  101. Caravia L, Dudau M, Gherghiceanu M, Tanase C, Enciu AM (2015) Could caveolae be acting as warnings of mitochondrial ageing? Mech Ageing Dev 146–148:81–87

    Article  PubMed  CAS  Google Scholar 

  102. Shin DM, Jeon JH, Kim CW, Cho SY, Lee HJ, Jang GY, Jeong EM, Lee DS, Kang JH, Melino G, Park SC, Kim IG (2008) TGFbeta mediates activation of transglutaminase 2 in response to oxidative stress that leads to protein aggregation. Faseb J 22:2498–2507

    Article  CAS  PubMed  Google Scholar 

  103. Li H, Sekine M, Seng S, Avraham S, Avraham HK (2009) BRCA1 interacts with Smad3 and regulates Smad3-mediated TGF-beta signaling during oxidative stress responses. PLoS One 4:e7091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Mirochnik Y, Veliceasa D, Williams L, Maxwell K, Yemelyanov A, Budunova I, Volpert OV (2012) Androgen receptor drives cellular senescence. PLoS One 7:e31052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9:619–631

    CAS  PubMed  Google Scholar 

  106. Caldecott KW (2014) DNA single-strand break repair. Exp Cell Res 329:2–8

    Article  CAS  PubMed  Google Scholar 

  107. Kubota Y, Takanami T, Higashitani A, Horiuchi S (2009) Localization of X-ray cross complementing gene 1 protein in the nuclear matrix is controlled by casein kinase II-dependent phosphorylation in response to oxidative damage. DNA Repair (Amst) 8:953–960

    Article  CAS  Google Scholar 

  108. Parsons JL, Dianova II, Finch D, Tait PS, Strom CE, Helleday T, Dianov GL (2010) XRCC1 phosphorylation by CK2 is required for its stability and efficient DNA repair. DNA Repair (Amst) 9:835–841

    Article  CAS  Google Scholar 

  109. Wei L, Nakajima S, Hsieh CL, Kanno S, Masutani M, Levine AS, Yasui A, Lan L (2013) Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose). J Cell Sci 126:4414–4423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. Int J Cancer 130:1715–1725

    Article  CAS  PubMed  Google Scholar 

  111. Overhoff MG, Garbe JC, Koh J, Stampfer MR, Beach DH, Bishop CL (2014) Cellular senescence mediated by p16INK4A-coupled miRNA pathways. Nucleic Acids Res 42:1606–1618

    Article  CAS  PubMed  Google Scholar 

  112. Vijayachandra K, Higgins W, Lee J, Glick A (2009) Induction of p16ink4a and p19ARF by TGFbeta1 contributes to growth arrest and senescence response in mouse keratinocytes. Mol Carcinog 48:181–186

    Article  CAS  PubMed  Google Scholar 

  113. Plymate SR, Haugk KH, Sprenger CC, Nelson PS, Tennant MK, Zhang Y, Oberley LW, Zhong W, Drivdahl R, Oberley TD (2003) Increased manganese superoxide dismutase (SOD-2) is part of the mechanism for prostate tumor suppression by Mac25/insulin-like growth factor binding-protein-related protein-1. Oncogene 22:1024–1034

    Article  CAS  PubMed  Google Scholar 

  114. Bernard D, Slomianny C, Vandenbunder B, Abbadie C (2001) cRel induces mitochondrial alterations in correlation with proliferation arrest. Free Radic Biol Med 31:943–953

    Article  CAS  PubMed  Google Scholar 

  115. Mowla SN, Perkins ND, Jat PS (2013) Friend or foe: emerging role of nuclear factor kappa-light-chain-enhancer of activated B cells in cell senescence. Onco Targets Ther 6:1221–1229

    PubMed Central  PubMed  Google Scholar 

  116. Ohanna M, Giuliano S, Bonet C, Imbert V, Hofman V, Zangari J, Bille K, Robert C, Bressac-de Paillerets B, Hofman P, Rocchi S, Peyron JF, Lacour JP, Ballotti R, Bertolotto C (2011) Senescent cells develop a PARP-1 and nuclear factor-κB-associated secretome (PNAS). Genes Dev 25:1245–1261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Hinz M, Stilmann M, Arslan SC, Khanna KK, Dittmar G, Scheidereit C (2010) A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol Cell 40:63–74

    Article  CAS  PubMed  Google Scholar 

  118. Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30:1536–1548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Walen KH (2004) Spontaneous cell transformation: karyoplasts derived from multinucleated cells produce new cell growth in senescent human epithelial cell cultures. In Vitro Cell Dev Biol Anim 40:150–158

    Article  PubMed  Google Scholar 

  120. Sundaram M, Guernsey DL, Rajaraman MM, Rajaraman R (2004) Neosis: a novel type of cell division in cancer. Cancer Biol Ther 3:207–218

    Article  CAS  PubMed  Google Scholar 

  121. Rohnalter V, Roth K, Finkernagel F, Adhikary T, Obert J, Dorzweiler K, Bensberg M, Muller-Brusselbach S, Muller R (2015) A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget 6:40005–40025

    Article  PubMed Central  PubMed  Google Scholar 

  122. Jonchere B, Vetillard A, Toutain B, Lam D, Bernard AC, Henry C, De Carne Trecesson S, Gamelin E, Juin P, Guette C, Coqueret O (2015) Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget 6:409–426

    Article  PubMed  Google Scholar 

  123. Novak P, Jensen TJ, Garbe JC, Stampfer MR, Futscher BW (2009) Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res 69:5251–5258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Holst CR, Nuovo GJ, Esteller M, Chew K, Baylin SB, Herman JG, Tlsty TD (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63:1596–1601

    CAS  PubMed  Google Scholar 

  125. Erenpreisa J, Salmina K, Huna A, Kosmacek EA, Cragg MS, Ianzini F, Anisimov AP (2011) Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation. Cell Biol Int 35:687–695

    Article  PubMed  Google Scholar 

  126. Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F, Favier L, Ghiringhelli F, Kroemer G, Solary E, Martin F, Chauffert B (2008) Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int 32:1031–1043

    Article  CAS  PubMed  Google Scholar 

  127. Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49

    Article  CAS  PubMed  Google Scholar 

  128. Sasaki M, Ikeda H, Sato Y, Nakanuma Y (2008) Proinflammatory cytokine-induced cellular senescence of biliary epithelial cells is mediated via oxidative stress and activation of ATM pathway: a culture study. Free Radic Res 42:625–632

    Article  CAS  PubMed  Google Scholar 

  129. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y (2010) Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J Hepatol 53:318–325

    Article  PubMed  Google Scholar 

  130. Shivshankar P, Brampton C, Miyasato S, Kasper M, Thannickal VJ, Le Saux CJ (2012) Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am J Respir Cell Mol Biol 47:28–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, Nakamura H (2013) Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol 65:1053–1062

    Article  CAS  PubMed  Google Scholar 

  132. Vital P, Castro P, Tsang S, Ittmann M (2014) The senescence-associated secretory phenotype promotes benign prostatic hyperplasia. Am J Pathol 184:721–731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Song JH, Kandasamy K, Zemskova M, Lin YW, Kraft AS (2011) The BH3 mimetic ABT-737 induces cancer cell senescence. Cancer Res 71:506–515

    Article  CAS  PubMed  Google Scholar 

  134. Marazita MC, Dugour A, Marquioni-Ramella MD, Figueroa JM, Suburo AM (2016) Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: implications for age-related macular degeneration. Redox Biol 7:78–87

    Article  CAS  PubMed  Google Scholar 

  135. Cao S, Walker GB, Wang X, Cui JZ, Matsubara JA (2013) Altered cytokine profiles of human retinal pigment epithelium: oxidant injury and replicative senescence. Mol Vis 19:718–728

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Ivison SM, Wang C, Himmel ME, Sheridan J, Delano J, Mayer ML, Yao Y, Kifayet A, Steiner TS (2010) Oxidative stress enhances IL-8 and inhibits CCL20 production from intestinal epithelial cells in response to bacterial flagellin. Am J Physiol Gastrointest Liver Physiol 299:G733–G741

    Article  CAS  PubMed  Google Scholar 

  137. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  CAS  PubMed  Google Scholar 

  138. Zurgil U, Ben-Ari A, Atias K, Isakov N, Apte R, Livneh E (2014) PKCeta promotes senescence induced by oxidative stress and chemotherapy. Cell Death Dis 5:e1531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Kato M, Ishizaki A, Hellman U, Wernstedt C, Kyogoku M, Miyazono K, Heldin CH, Funa K (1995) A human keratinocyte cell line produces two autocrine growth inhibitors, transforming growth factor-beta and insulin-like growth factor binding protein-6, in a calcium- and cell density-dependent manner. J Biol Chem 270:12373–12379

    Article  CAS  PubMed  Google Scholar 

  140. Akiel M, Rajasekaran D, Gredler R, Siddiq A, Srivastava J, Robertson C, Jariwala NH, Fisher PB, Sarkar D (2014) Emerging role of insulin-like growth factor-binding protein 7 in hepatocellular carcinoma. J Hepatocell Carcinoma 1:9–19

    PubMed Central  PubMed  Google Scholar 

  141. Swisshelm K, Ryan K, Tsuchiya K, Sager R (1995) Enhanced expression of an insulin growth factor-like binding protein (mac25) in senescent human mammary epithelial cells and induced expression with retinoic acid. Proc Natl Acad Sci USA 92:4472–4476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Lo Pez-Bermejo A, Buckway CK, Devi GR, Hwa V, Plymate SR, Oh Y, Rosenfeld RG (2000) Characterization of insulin-like growth factor-binding protein-related proteins (IGFBP-rPs) 1, 2, and 3 in human prostate epithelial cells: potential roles for IGFBP-rP1 and 2 in senescence of the prostatic epithelium. Endocrinology 141:4072–4080

    Article  CAS  Google Scholar 

  143. Benatar T, Yang W, Amemiya Y, Evdokimova V, Kahn H, Holloway C, Seth A (2012) IGFBP7 reduces breast tumor growth by induction of senescence and apoptosis pathways. Breast Cancer Res Treat 133:563–573

    Article  CAS  PubMed  Google Scholar 

  144. Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496

    Article  CAS  PubMed  Google Scholar 

  145. Jun JI, Lau LF (2010) Cellular senescence controls fibrosis in wound healing. Aging (Albany NY) 2:627–631

    Article  CAS  Google Scholar 

  146. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Munoz-Espin D, Kastrinakis NG, Pouli N, Marakos P, Townsend P, Serrano M, Bartek J, Gorgoulis VG (2017) Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16:192–197

    Article  CAS  PubMed  Google Scholar 

  149. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Melk A, Schmidt BM, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF (2004) Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 65:510–520

    Article  CAS  PubMed  Google Scholar 

  152. Liu J, Yang JR, He YN, Cai GY, Zhang JG, Lin LR, Zhan J, Zhang JH, Xiao HS (2012) Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl Res 159:454–463

    Article  CAS  PubMed  Google Scholar 

  153. Li ZY, Chen ZL, Zhang T, Wei C, Shi WY (2016) TGF-beta and NF-κB signaling pathway crosstalk potentiates corneal epithelial senescence through an RNA stress response. Aging (Albany NY) 8:2337–2354

    Article  Google Scholar 

  154. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:311–323

    Article  CAS  PubMed  Google Scholar 

  155. Berkenkamp B, Susnik N, Baisantry A, Kuznetsova I, Jacobi C, Sorensen-Zender I, Broecker V, Haller H, Melk A, Schmitt R (2014) In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS One 9:e88071

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  156. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Choi J, Shendrik I, Peacocke M, Peehl D, Buttyan R, Ikeguchi EF, Katz AE, Benson MC (2000) Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Urology 56:160–166

    Article  CAS  PubMed  Google Scholar 

  158. Castro P, Giri D, Lamb D, Ittmann M (2003) Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55:30–38

    Article  CAS  PubMed  Google Scholar 

  159. Castro P, Xia C, Gomez L, Lamb DJ, Ittmann M (2004) Interleukin-8 expression is increased in senescent prostatic epithelial cells and promotes the development of benign prostatic hyperplasia. Prostate 60:153–159

    Article  CAS  PubMed  Google Scholar 

  160. Olinski R, Zastawny TH, Foksinski M, Barecki A, Dizdaroglu M (1995) DNA base modifications and antioxidant enzyme activities in human benign prostatic hyperplasia. Free Radic Biol Med 18:807–813

    Article  CAS  PubMed  Google Scholar 

  161. Sasaki M, Nakanuma Y (2015) Cellular senescence in biliary pathology. Special emphasis on expression of a polycomb group protein EZH2 and a senescent marker p16INK4a in bile ductular tumors and lesions. Histol Histopathol 30:267–275

    PubMed  Google Scholar 

  162. Yamaguchi J, Sasaki M, Harada K, Zen Y, Sato Y, Ikeda H, Itatsu K, Yokoyama Y, Ando H, Ohta T, Kubota A, Shimizu K, Nimura Y, Nagino M, Nakanuma Y (2009) Papillary hyperplasia of the gallbladder in pancreaticobiliary maljunction represents a senescence-related lesion induced by lysolecithin. Lab Invest 89:1018–1031

    Article  CAS  PubMed  Google Scholar 

  163. Radisky DC, Santisteban M, Berman HK, Gauthier ML, Frost MH, Reynolds CA, Vierkant RA, Pankratz VS, Visscher DW, Tlsty TD, Hartmann LC (2011) p16(INK4a) expression and breast cancer risk in women with atypical hyperplasia. Cancer Prev Res (Phila) 4:1953–1960

    Article  Google Scholar 

  164. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642

    Article  CAS  PubMed  Google Scholar 

  165. Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Carriere C, Gore AJ, Norris AM, Gunn JR, Young AL, Longnecker DS, Korc M (2011) Deletion of Rb accelerates pancreatic carcinogenesis by oncogenic Kras and impairs senescence in premalignant lesions. Gastroenterology 141:1091–1101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15:428–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R, Ben-Porath I, Krizhanovsky V (2015) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 7:11190

    Article  CAS  Google Scholar 

  170. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83

    Article  CAS  PubMed  Google Scholar 

  171. Menon R, Boldogh I, Urrabaz-Garza R, Polettini J, Syed TA, Saade GR, Papaconstantinou J, Taylor RN (2013) Senescence of primary amniotic cells via oxidative DNA damage. PLoS One 8:e83416

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  172. Behnia F, Peltier MR, Saade GR, Menon R (2015) Environmental pollutant polybrominated diphenyl ether, a flame retardant, induces primary amnion cell senescence. Am J Reprod Immunol 74:398–406

    Article  CAS  PubMed  Google Scholar 

  173. Polettini J, Behnia F, Taylor BD, Saade GR, Taylor RN, Menon R (2015) Telomere fragment induced amnion cell senescence: a contributor to parturition? PLoS One 10:e0137188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  174. Sasaki M, Ikeda H, Haga H, Manabe T, Nakanuma Y (2005) Frequent cellular senescence in small bile ducts in primary biliary cirrhosis: a possible role in bile duct loss. J Pathol 205:451–459

    Article  PubMed  Google Scholar 

  175. Sasaki M, Ikeda H, Sato Y, Nakanuma Y (2006) Decreased expression of Bmi1 is closely associated with cellular senescence in small bile ducts in primary biliary cirrhosis. Am J Pathol 169:831–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y (2008) Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology 48:186–195

    Article  PubMed  Google Scholar 

  177. Demetris AJ, Markus BH, Saidman S, Fung JJ, Makowka L, Graner S, Duquesnoy R, Starzl TE (1988) Isolation and primary cultures of human intrahepatic bile ductular epithelium. In Vitro Cell Dev Biol 24:464–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Lunz JG 3rd, Contrucci S, Ruppert K, Murase N, Fung JJ, Starzl TE, Demetris AJ (2001) Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21(WAF1/Cip1) as a disease marker and the influence of immunosuppressive drugs. Am J Pathol 158:1379–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Qin XY, Fukuda T, Yang L, Zaha H, Akanuma H, Zeng Q, Yoshinaga J, Sone H (2012) Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol Ther 13:296–306

    Article  CAS  PubMed  Google Scholar 

  180. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    Article  PubMed  CAS  Google Scholar 

  181. Maund SL, Shi L, Cramer SD (2013) A role for interleukin-1 alpha in the 1,25 dihydroxyvitamin D3 response in mammary epithelial cells. PLoS One 8:e81367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Trost TM, Lausch EU, Fees SA, Schmitt S, Enklaar T, Reutzel D, Brixel LR, Schmidtke P, Maringer M, Schiffer IB, Heimerdinger CK, Hengstler JG, Fritz G, Bockamp EO, Prawitt D, Zabel BU, Spangenberg C (2005) Premature senescence is a primary fail-safe mechanism of ERBB2-driven tumorigenesis in breast carcinoma cells. Cancer Res 65:840–849

    CAS  PubMed  Google Scholar 

  183. Elmore LW, Rehder CW, Di X, McChesney PA, Jackson-Cook CK, Gewirtz DA, Holt SE (2002) Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction. J Biol Chem 277:35509–35515

    Article  CAS  PubMed  Google Scholar 

  184. Yaar M, Eller MS, Panova I, Kubera J, Wee LH, Cowan KH, Gilchrest BA (2007) Telomeric DNA induces apoptosis and senescence of human breast carcinoma cells. Breast Cancer Res 9:R13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  185. Tato-Costa J, Casimiro S, Pacheco T, Pires R, Fernandes A, Alho I, Pereira P, Costa P, Castelo HB, Ferreira J, Costa L (2016) Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer. Clin Colorectal Cancer 15(170–178):e3

    Google Scholar 

  186. Dalerba P, Guiducci C, Poliani PL, Cifola I, Parenza M, Frattini M, Gallino G, Carnevali I, Di Giulio I, Andreola S, Lombardo C, Rivoltini L, Schweighoffer T, Belli F, Colombo MP, Parmiani G, Castelli C (2005) Reconstitution of human telomerase reverse transcriptase expression rescues colorectal carcinoma cells from in vitro senescence: evidence against immortality as a constitutive trait of tumor cells. Cancer Res 65:2321–2329

    Article  CAS  PubMed  Google Scholar 

  187. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  188. De Simone C, Ferranti P, Picariello G, Scognamiglio I, Dicitore A, Addeo F, Chianese L, Stiuso P (2011) Peptides from water buffalo cheese whey induced senescence cell death via ceramide secretion in human colon adenocarcinoma cell line. Mol Nutr Food Res 55:229–238

    Article  PubMed  CAS  Google Scholar 

  189. Han Z, Wei W, Dunaway S, Darnowski JW, Calabresi P, Sedivy J, Hendrickson EA, Balan KV, Pantazis P, Wyche JH (2002) Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 277:17154–17160

    Article  CAS  PubMed  Google Scholar 

  190. Rudolf E, John S, Cervinka M (2012) Irinotecan induces senescence and apoptosis in colonic cells in vitro. Toxicol Lett 214:1–8

    Article  CAS  PubMed  Google Scholar 

  191. Gao J, Wang HL, Shreve A, Iyer R (2010) Fullerene derivatives induce premature senescence: a new toxicity paradigm or novel biomedical applications. Toxicol Appl Pharmacol 244:130–143

    Article  CAS  PubMed  Google Scholar 

  192. Rockwell GA, Johnson G, Sibatani A (1987) In vitro senescence of human keratinocyte cultures. Cell Struct Funct 12:539–548

    Article  CAS  PubMed  Google Scholar 

  193. Munro J, Stott FJ, Vousden KH, Peters G, Parkinson EK (1999) Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization. Cancer Res 59:2516–2521

    CAS  PubMed  Google Scholar 

  194. Shen ZY, Xu LY, Li EM, Shen J, Zheng RM, Cai WJ, Zeng Y (2002) Immortal phenotype of the esophageal epithelial cells in the process of immortalization. Int J Mol Med 10:641–646

    PubMed  Google Scholar 

  195. Zhang ZF, Zhang J, Hui YN, Zheng MH, Liu XP, Kador PF, Wang YS, Yao LB, Zhou J (2011) Up-regulation of NDRG2 in senescent lens epithelial cells contributes to age-related cataract in human. PLoS One 6:e26102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Wang J, Feng H, Huang XQ, Xiang H, Mao YW, Liu JP, Yan Q, Liu WB, Liu Y, Deng M, Gong L, Sun S, Luo C, Liu SJ, Zhang XJ, Liu Y, Li DW (2005) Human telomerase reverse transcriptase immortalizes bovine lens epithelial cells and suppresses differentiation through regulation of the ERK signaling pathway. J Biol Chem 280:22776–22787

    Article  CAS  PubMed  Google Scholar 

  197. Gao ZX, Song XL, Li SS, Lai XR, Yang YL, Yang G, Li ZJ, Cui YH, Pan HW (2016) Assessment of DNA damage and cell senescence in corneal epithelial cells exposed to airborne particulate matter (PM2.5) collected in Guangzhou, China. Invest Ophthalmol Vis Sci 57:3093–3102

    Article  CAS  PubMed  Google Scholar 

  198. Zhuge CC, Xu JY, Zhang J, Li W, Li P, Li Z, Chen L, Liu X, Shang P, Xu H, Lu Y, Wang F, Lu L, Xu GT (2014) Fullerenol protects retinal pigment epithelial cells from oxidative stress-induced premature senescence via activating SIRT1. Invest Ophthalmol Vis Sci 55:4628–4638

    Article  PubMed  Google Scholar 

  199. Yu AL, Fuchshofer R, Kook D, Kampik A, Bloemendal H, Welge-Lussen U (2009) Subtoxic oxidative stress induces senescence in retinal pigment epithelial cells via TGF-beta release. Invest Ophthalmol Vis Sci 50:926–935

    Article  PubMed  Google Scholar 

  200. Yu AL, Lorenz RL, Haritoglou C, Kampik A, Welge-Lussen U (2009) Biological effects of native and oxidized low-density lipoproteins in cultured human retinal pigment epithelial cells. Exp Eye Res 88:495–503

    Article  CAS  PubMed  Google Scholar 

  201. Demidenko ZN, Blagosklonny MV (2008) Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 7:3355–3361

    Article  CAS  PubMed  Google Scholar 

  202. Kook D, Wolf AH, Yu AL, Neubauer AS, Priglinger SG, Kampik A, Welge-Lussen UC (2008) The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci 49:1712–1720

    Article  PubMed  Google Scholar 

  203. Zhu D, Wu J, Spee C, Ryan SJ, Hinton DR (2009) BMP4 mediates oxidative stress-induced retinal pigment epithelial cell senescence and is overexpressed in age-related macular degeneration. J Biol Chem 284:9529–9539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Honda S, Weigel A, Hjelmeland LM, Handa JT (2001) Induction of telomere shortening and replicative senescence by cryopreservation. Biochem Biophys Res Commun 282:493–498

    Article  CAS  PubMed  Google Scholar 

  205. Honda S, Hjelmeland LM, Handa JT (2002) Senescence associated beta galactosidase activity in human retinal pigment epithelial cells exposed to mild hyperoxia in vitro. Br J Ophthalmol 86:159–162

    Article  PubMed Central  PubMed  Google Scholar 

  206. Matsunaga H, Handa JT, Aotaki-Keen A, Sherwood SW, West MD, Hjelmeland LM (1999) Beta-galactosidase histochemistry and telomere loss in senescent retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40:197–202

    CAS  PubMed  Google Scholar 

  207. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  PubMed  Google Scholar 

  208. Rawes V, Kipling D, Kill IR, Faragher RG (1997) The kinetics of senescence in retinal pigmented epithelial cells: a test for the telomere hypothesis of ageing? Biochemistry (Mosc) 62:1291–1295

    CAS  Google Scholar 

  209. Lu Y, Wang J, Dapeng C, Wu D, Cai G, Chen X (2016) Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. BMC Nephrol 17:39

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  210. Jennings P, Koppelstaetter C, Aydin S, Abberger T, Wolf AM, Mayer G, Pfaller W (2007) Cyclosporine A induces senescence in renal tubular epithelial cells. Am J Physiol Renal Physiol 293:F831–F838

    Article  CAS  PubMed  Google Scholar 

  211. Melk A, Schmidt BM, Vongwiwatana A, Rayner DC, Halloran PF (2005) Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am J Transplant 5:1375–1382

    Article  CAS  PubMed  Google Scholar 

  212. Ferlicot S, Durrbach A, Ba N, Desvaux D, Bedossa P, Paradis V (2003) The role of replicative senescence in chronic allograft nephropathy. Hum Pathol 34:924–928

    Article  PubMed  Google Scholar 

  213. Joosten SA, van Ham V, Nolan CE, Borrias MC, Jardine AG, Shiels PG, van Kooten C, Paul LC (2003) Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am J Pathol 162:1305–1312

    Article  PubMed Central  PubMed  Google Scholar 

  214. Chkhotua AB, Altimari A, Gabusi E, D’Errico A, Stefoni S, Chieco P, Yakubovich M, Vienken J, Yussim A, Grigioni WF (2003) Increased expression of p21 (WAF1/CIP1) cyclin-dependent kinase (CDK) inhibitor gene in chronic allograft nephropathy correlates with the number of acute rejection episodes. Transpl Int 16:502–506

    PubMed  Google Scholar 

  215. Chkhotua AB, Gabusi E, Altimari A, D’Errico A, Yakubovich M, Vienken J, Stefoni S, Chieco P, Yussim A, Grigioni WF (2003) Increased expression of p16(INK4a) and p27(Kip1) cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. Am J Kidney Dis 41:1303–1313

    Article  CAS  PubMed  Google Scholar 

  216. Park JY, Park SH, Weiss RH (2009) Disparate effects of roscovitine on renal tubular epithelial cell apoptosis and senescence: implications for autosomal dominant polycystic kidney disease. Am J Nephrol 29:509–515

    Article  CAS  PubMed  Google Scholar 

  217. Takaki A, Jimi S, Segawa M, Iwasaki H (2004) Cadmium-induced nephropathy in rats is mediated by expression of senescence-associated beta-galactosidase and accumulation of mitochondrial DNA deletion. Ann N Y Acad Sci 1011:332–338

    Article  CAS  PubMed  Google Scholar 

  218. Bodas M, Van Westphal C, Carpenter-Thompson R, Mohanty DK, Vij N (2016) Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment. Free Radic Biol Med 97:441–453

    Article  CAS  PubMed  Google Scholar 

  219. Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H, Rahman I (2015) Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. Faseb J 29:2912–2929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Muller M (2006) Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic Biol Med 41:1670–1677

    Article  CAS  PubMed  Google Scholar 

  221. Tsuji T, Aoshiba K, Nagai A (2004) Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol 31:643–649

    Article  CAS  PubMed  Google Scholar 

  222. Tsuji T, Aoshiba K, Nagai A (2006) Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med 174:886–893

    Article  CAS  PubMed  Google Scholar 

  223. Parker SM, Goriwiec MR, Borthwick LA, Johnson G, Ward C, Lordan JL, Corris PA, Saretzki GC, Fisher AJ (2008) Airway epithelial cell senescence in the lung allograft. Am J Transplant 8:1544–1549

    Article  CAS  PubMed  Google Scholar 

  224. Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, Kawaishi M, Odaka M, Morikawa T, Nishimura SL, Nakayama K, Kuwano K (2011) Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 300:L391–L401

    Article  CAS  PubMed  Google Scholar 

  225. Aoshiba K, Tsuji T, Nagai A (2003) Bleomycin induces cellular senescence in alveolar epithelial cells. Eur Respir J 22:436–443

    Article  CAS  PubMed  Google Scholar 

  226. Kim CO, Huh AJ, Han SH, Kim JM (2012) Analysis of cellular senescence induced by lipopolysaccharide in pulmonary alveolar epithelial cells. Arch Gerontol Geriatr 54:e35–e41

    Article  CAS  PubMed  Google Scholar 

  227. Kang MK, Guo W, Park NH (1998) Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres. Cell Growth Differ 9:85–95

    CAS  PubMed  Google Scholar 

  228. Kang MK, Kim RH, Shin KH, Zhong W, Faull KF, Park NH (2005) Senescence-associated decline in the intranuclear accumulation of hOGG1-alpha and impaired 8-oxo-dG repair activity in senescing normal human oral keratinocytes in vivo. Exp Cell Res 310:186–195

    Article  CAS  PubMed  Google Scholar 

  229. You YO, Lee G, Min BM (2000) Retinoic acid extends the in vitro life span of normal human oral keratinocytes by decreasing p16(INK4A) expression and maintaining telomerase activity. Biochem Biophys Res Commun 268:268–274

    Article  CAS  PubMed  Google Scholar 

  230. Kim RH, Lieberman MB, Lee R, Shin KH, Mehrazarin S, Oh JE, Park NH, Kang MK (2010) Bmi-1 extends the life span of normal human oral keratinocytes by inhibiting the TGF-beta signaling. Exp Cell Res 316:2600–2608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  231. Kim RH, Lee RS, Williams D, Bae S, Woo J, Lieberman M, Oh JE, Dong Q, Shin KH, Kang MK, Park NH (2011) Bisphosphonates induce senescence in normal human oral keratinocytes. J Dent Res 90:810–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  232. Seki Y, Koizumi H, Koizuka I, Takakuwa T, Tsutsumi K (2000) Nuclear expression of the p16CDKN2 gene product during senescence of human pharyngeal epithelial cells. Auris Nasus Larynx 27:147–151

    Article  CAS  PubMed  Google Scholar 

  233. Frame FM, Savoie H, Bryden F, Giuntini F, Mann VM, Simms MS, Boyle RW, Maitland NJ (2016) Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis. Cancer Med 5:61–73

    Article  CAS  PubMed  Google Scholar 

  234. Schwarze SR, Fu VX, Desotelle JA, Kenowski ML, Jarrard DF (2005) The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 7:816–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Pernicova Z, Slabakova E, Kharaishvili G, Bouchal J, Kral M, Kunicka Z, Machala M, Kozubik A, Soucek K (2011) Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia 13:526–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  236. Axanova LS, Chen YQ, McCoy T, Sui G, Cramer SD (2010) 1,25-dihydroxyvitamin D(3) and PI3K/AKT inhibitors synergistically inhibit growth and induce senescence in prostate cancer cells. Prostate 70:1658–1671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  237. Reznikoff CA, Yeager TR, Belair CD, Savelieva E, Puthenveettil JA, Stadler WM (1996) Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res 56:2886–2890

    CAS  PubMed  Google Scholar 

  238. Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767

    CAS  PubMed  Google Scholar 

  239. Chen YL, Chen YJ, Tsai WH, Ko YC, Chen JY, Lin SF (2009) The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8:58–65

    Article  CAS  PubMed  Google Scholar 

  240. Basu D, Reyes-Mugica M, Rebbaa A (2012) Role of the beta catenin destruction complex in mediating chemotherapy-induced senescence-associated secretory phenotype. PLoS One 7:e52188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  241. Basu N, Saha S, Khan I, Ramachandra SG, Visweswariah SS (2014) Intestinal cell proliferation and senescence are regulated by receptor guanylyl cyclase C and p21. J Biol Chem 289:581–593

    Article  CAS  PubMed  Google Scholar 

  242. Wiel C, Gras B, Vindrieux D, Warnier M, Gitenay D, Le Calve B, Ferrand M, Augert A, Bernard D (2016) Multidrug resistance protein 3 loss promotes tumor formation by inducing senescence escape. Oncogene 35:1596–1601

    Article  CAS  PubMed  Google Scholar 

  243. Oyama K, Okawa T, Nakagawa H, Takaoka M, Andl CD, Kim SH, Klein-Szanto A, Diehl JA, Herlyn M, El-Deiry W, Rustgi AK (2007) AKT induces senescence in primary esophageal epithelial cells but is permissive for differentiation as revealed in organotypic culture. Oncogene 26:2353–2364

    Article  CAS  PubMed  Google Scholar 

  244. Bhatia B, Tang S, Yang P, Doll A, Aumueller G, Newman RA, Tang DG (2005) Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene 24:3583–3595

    Article  CAS  PubMed  Google Scholar 

  245. Liu J, Yang JR, Chen XM, Cai GY, Lin LR, He YN (2015) Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy. Am J Physiol Cell Physiol 308:C621–C630

    Article  CAS  PubMed  Google Scholar 

  246. Takasaka N, Araya J, Hara H, Ito S, Kobayashi K, Kurita Y, Wakui H, Yoshii Y, Yumino Y, Fujii S, Minagawa S, Tsurushige C, Kojima J, Numata T, Shimizu K, Kawaishi M, Kaneko Y, Kamiya N, Hirano J, Odaka M, Morikawa T, Nishimura SL, Nakayama K, Kuwano K (2014) Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol 192:958–968

    Article  CAS  PubMed  Google Scholar 

  247. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Orntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    Article  CAS  PubMed  Google Scholar 

  248. Han S, Lu Q, Wang N (2016) Apr3 accelerates the senescence of human retinal pigment epithelial cells. Mol Med Rep 13:3121–3126

    Article  CAS  PubMed  Google Scholar 

  249. Lyros O, Rafiee P, Nie L, Medda R, Jovanovic N, Schmidt J, Mackinnon A, Venu N, Shaker R (2014) Dickkopf-1, the Wnt antagonist, is induced by acidic pH and mediates epithelial cellular senescence in human reflux esophagitis. Am J Physiol Gastrointest Liver Physiol 306:G557–G574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Zhang H, Chi Y, Gao K, Zhang X, Yao J (2015) p53 protein-mediated up-regulation of MAP kinase phosphatase 3 (MKP-3) contributes to the establishment of the cellular senescent phenotype through dephosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). J Biol Chem 290:1129–1140

    Article  CAS  PubMed  Google Scholar 

  251. Angelini PD, Zacarias Fluck MF, Pedersen K, Parra-Palau JL, Guiu M, Bernado Morales C, Vicario R, Luque-Garcia A, Navalpotro NP, Giralt J, Canals F, Gomis RR, Tabernero J, Baselga J, Villanueva J, Arribas J (2013) Constitutive HER2 signaling promotes breast cancer metastasis through cellular senescence. Cancer Res 73:450–458

    Article  CAS  PubMed  Google Scholar 

  252. Kim JE, Shin JS, Moon JH, Hong SW, Jung DJ, Kim JH, Hwang IY, Shin YJ, Gong EY, Lee DH, Kim SM, Lee EY, Kim YS, Kim D, Hur D, Kim TW, Kim KP, Jin DH, Lee WJ (2016) Foxp3 is a key downstream regulator of p53-mediated cellular senescence. Oncogene 36:219–230

    Article  PubMed  CAS  Google Scholar 

  253. Wu Q, Jiang D, Matsuda JL, Ternyak K, Zhang B, Chu HW (2016) Cigarette smoke induces human airway epithelial senescence via growth differentiation factor 15 production. Am J Respir Cell Mol Biol 55:429–438

    Article  CAS  PubMed  Google Scholar 

  254. Chen Y, Yang L, Cui T, Pacyna-Gengelbach M, Petersen I (2015) HOPX is methylated and exerts tumour-suppressive function through Ras-induced senescence in human lung cancer. J Pathol 235:397–407

    Article  CAS  PubMed  Google Scholar 

  255. Wilson HM, Birnbaum RS, Poot M, Quinn LS, Swisshelm K (2002) Insulin-like growth factor binding protein-related protein 1 inhibits proliferation of MCF-7 breast cancer cells via a senescence-like mechanism. Cell Growth Differ 13:205–213

    CAS  PubMed  Google Scholar 

  256. Xin H, Curry J, Johnstone RW, Nickoloff BJ, Choubey D (2003) Role of IFI 16, a member of the interferon-inducible p200-protein family, in prostate epithelial cellular senescence. Oncogene 22:4831–4840

    Article  CAS  PubMed  Google Scholar 

  257. Jia M, Souchelnytskyi N, Hellman U, O’Hare M, Jat PS, Souchelnytskyi S (2010) Proteome profiling of immortalization-to-senescence transition of human breast epithelial cells identified MAP2K3 as a senescence-promoting protein which is downregulated in human breast cancer. Proteomics Clin Appl 4:816–828

    Article  CAS  PubMed  Google Scholar 

  258. Cote M, Miller AD, Liu SL (2007) Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence. Biochem Biophys Res Commun 360:219–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  259. Chen Y, Wang J, Cai J, Sternberg P (2010) Altered mTOR signaling in senescent retinal pigment epithelium. Invest Ophthalmol Vis Sci 51:5314–5319

    Article  PubMed Central  PubMed  Google Scholar 

  260. Turner-Ivey B, Manevich Y, Schulte J, Kistner-Griffin E, Jezierska-Drutel A, Liu Y, Neumann CA (2013) Role for Prdx1 as a specific sensor in redox-regulated senescence in breast cancer. Oncogene 32:5302–5314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  261. Ruan JW, Liao YC, Lua I, Li MH, Hsu CY, Chen JH (2012) Human pituitary tumor-transforming gene 1 overexpression reinforces oncogene-induced senescence through CXCR2/p21 signaling in breast cancer cells. Breast Cancer Res 14:R106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  262. Wen FC, Chang TW, Tseng YL, Lee JC, Chang MC (2014) hRAD9 functions as a tumor suppressor by inducing p21-dependent senescence and suppressing epithelial-mesenchymal transition through inhibition of Slug transcription. Carcinogenesis 35:1481–1490

    Article  CAS  PubMed  Google Scholar 

  263. Vijayachandra K, Lee J, Glick AB (2003) Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model. Cancer Res 63:3447–3452

    CAS  PubMed  Google Scholar 

  264. Zhang H, Teng Y, Kong Y, Kowalski PE, Cohen SN (2008) Suppression of human tumor cell proliferation by Smurf2-induced senescence. J Cell Physiol 215:613–620

    Article  CAS  PubMed  Google Scholar 

  265. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y (2012) Increased expression of mitochondrial proteins associated with autophagy in biliary epithelial lesions in primary biliary cirrhosis. Liver Int 33:312–320

    Article  PubMed  Google Scholar 

  266. Xu Y, Zhang S, Niu H, Ye Y, Hu F, Chen S, Li X, Luo X, Jiang S, Liu Y, Chen Y, Li J, Xiang R, Li N (2015) STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer. Sci Rep 5:11754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  267. Wang Y, Wong MM, Zhang X, Chiu SK (2015) Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells. Exp Cell Res 339:135–146

    Article  CAS  PubMed  Google Scholar 

  268. Sugrue MM, Shin DY, Lee SW, Aaronson SA (1997) Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci USA 94:9648–9653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  269. Sommer M, Poliak N, Upadhyay S, Ratovitski E, Nelkin BD, Donehower LA, Sidransky D (2006) DeltaNp63alpha overexpression induces downregulation of Sirt1 and an accelerated aging phenotype in the mouse. Cell Cycle 5:2005–2011

    Article  CAS  PubMed  Google Scholar 

  270. Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA (2005) p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19:1986–1999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  271. Lin S, Yang J, Elkahloun AG, Bandyopadhyay A, Wang L, Cornell JE, Yeh IT, Agyin J, Tomlinson G, Sun LZ (2012) Attenuation of TGF-beta signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells. Mol Biol Cell 23:1569–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  272. Bitler BG, Nicodemus JP, Li H, Cai Q, Wu H, Hua X, Li T, Birrer MJ, Godwin AK, Cairns P, Zhang R (2011) Wnt5a suppresses epithelial ovarian cancer by promoting cellular senescence. Cancer Res 71:6184–6194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  273. Brown NE, Jeselsohn R, Bihani T, Hu MG, Foltopoulou P, Kuperwasser C, Hinds PW (2012) Cyclin D1 activity regulates autophagy and senescence in the mammary epithelium. Cancer Res 72:6477–6489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  274. Sarker RS, John-Schuster G, Bohla A, Mutze K, Burgstaller G, Bedford MT, Konigshoff M, Eickelberg O, Yildirim AO (2015) Coactivator-associated arginine methyltransferase-1 function in alveolar epithelial senescence and elastase-induced emphysema susceptibility. Am J Respir Cell Mol Biol 53:769–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  275. Hara H, Araya J, Takasaka N, Fujii S, Kojima J, Yumino Y, Shimizu K, Ishikawa T, Numata T, Kawaishi M, Saito K, Hirano J, Odaka M, Morikawa T, Hano H, Nakayama K, Kuwano K (2012) Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence. Am J Respir Cell Mol Biol 46:306–312

    Article  CAS  PubMed  Google Scholar 

  276. Pan WW, Yi FP, Cao LX, Liu XM, Shen ZF, Bu YQ, Xu Y, Fan HY, Song FZ (2013) DAXX silencing suppresses mouse ovarian surface epithelial cell growth by inducing senescence and DNA damage. Gene 526:287–294

    Article  CAS  PubMed  Google Scholar 

  277. Alexander PB, Yuan L, Yang P, Sun T, Chen R, Xiang H, Chen J, Wu H, Radiloff DR, Wang XF (2015) EGF promotes mammalian cell growth by suppressing cellular senescence. Cell Res 25:135–138

    Article  CAS  PubMed  Google Scholar 

  278. Liu Z, Wang L, Yang J, Bandyopadhyay A, Kaklamani V, Wang S, Sun LZ (2016) Estrogen receptor alpha inhibits senescence-like phenotype and facilitates transformation induced by oncogenic ras in human mammary epithelial cells. Oncotarget 7:39097–39107

    Article  PubMed Central  PubMed  Google Scholar 

  279. Smirnov A, Panatta E, Lena A, Castiglia D, Di Daniele N, Melino G, Candi E (2016) FOXM1 regulates proliferation, senescence and oxidative stress in keratinocytes and cancer cells. Aging (Albany NY) 8:1384–1397

    Article  Google Scholar 

  280. Lu D, Rauhauser A, Li B, Ren C, McEnery K, Zhu J, Chaki M, Vadnagara K, Elhadi S, Jetten AM, Igarashi P, Attanasio M (2016) Loss of Glis2/NPHP7 causes kidney epithelial cell senescence and suppresses cyst growth in the Kif3a mouse model of cystic kidney disease. Kidney Int 89:1307–1323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  281. Ikeda Y, Inagi R, Miyata T, Nagai R, Arai M, Miyashita M, Itokawa M, Fujita T, Nangaku M (2011) Glyoxalase I retards renal senescence. Am J Pathol 179:2810–2821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  282. Gitenay D, Wiel C, Lallet-Daher H, Vindrieux D, Aubert S, Payen L, Simonnet H, Bernard D (2014) Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence. Cell Death Dis 5:e1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Gabai VL, Yaglom JA, Waldman T, Sherman MY (2009) Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells. Mol Cell Biol 29:559–569

    Article  CAS  PubMed  Google Scholar 

  284. O’Callaghan-Sunol C, Gabai VL, Sherman MY (2007) Hsp27 modulates p53 signaling and suppresses cellular senescence. Cancer Res 67:11779–11788

    Article  PubMed  CAS  Google Scholar 

  285. Chan KC, Ting CM, Chan PS, Lo MC, Lo KW, Curry JE, Smyth T, Lee AW, Ng WT, Tsao GS, Wong RN, Lung ML, Mak NK (2013) A novel Hsp90 inhibitor AT13387 induces senescence in EBV-positive nasopharyngeal carcinoma cells and suppresses tumor formation. Mol Cancer 12:128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  286. Di K, Ling MT, Tsao SW, Wong YC, Wang X (2006) Id-1 modulates senescence and TGF-beta1 sensitivity in prostate epithelial cells. Biol Cell 98:523–533

    Article  CAS  PubMed  Google Scholar 

  287. Ohta K, Haraguchi N, Kano Y, Kagawa Y, Konno M, Nishikawa S, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Noguchi Y, Ozaki M, Kudo T, Sakai D, Satoh T, Fukami M, Ishii M, Yamamoto H, Doki Y, Mori M, Ishii H (2013) Depletion of JARID1B induces cellular senescence in human colorectal cancer. Int J Oncol 42:1212–1218

    Article  CAS  PubMed  Google Scholar 

  288. Lee KE, Bar-Sagi D (2010) Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. Cancer Cell 18:448–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  289. Prencipe M, Fitzpatrick P, Gorman S, Tosetto M, Klinger R, Furlong F, Harrison M, O’Connor D, Roninson IB, O’Sullivan J, McCann A (2009) Cellular senescence induced by aberrant MAD2 levels impacts on paclitaxel responsiveness in vitro. Br J Cancer 101:1900–1908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  290. Dvashi Z, Green Y, Pollack A (2014) TAK1 inhibition accelerates cellular senescence of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 55:5679–5686

    Article  CAS  PubMed  Google Scholar 

  291. Wu D, Yu S, Jia L, Zou C, Xu Z, Xiao L, Wong KB, Ng CF, Chan FL (2015) Orphan nuclear receptor TLX functions as a potent suppressor of oncogene-induced senescence in prostate cancer via its transcriptional co-regulation of the CDKN1A (p21(WAF1)(/)(CIP1)) and SIRT1 genes. J Pathol 236:103–115

    Article  CAS  PubMed  Google Scholar 

  292. Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N, Yoshida M, Hara H, Minagawa S, Wakui H, Fujii S, Kojima J, Shimizu K, Numata T, Kawaishi M, Odaka M, Morikawa T, Harada T, Nishimura SL, Kaneko Y, Nakayama K, Kuwano K (2015) PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy 11:547–559

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  293. Paget JA, Restall IJ, Daneshmand M, Mersereau JA, Simard MA, Parolin DA, Lavictoire SJ, Amin MS, Islam S, Lorimer IA (2012) Repression of cancer cell senescence by PKCiota. Oncogene 31:3584–3596

    Article  CAS  PubMed  Google Scholar 

  294. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, Huang B, Zhang Y, Lu J (2016) The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep 6:19874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  295. Aird KM, Li H, Xin F, Konstantinopoulos PA, Zhang R (2014) Identification of ribonucleotide reductase M2 as a potential target for pro-senescence therapy in epithelial ovarian cancer. Cell Cycle 13:199–207

    Article  CAS  PubMed  Google Scholar 

  296. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell 136:62–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  297. Emadi Baygi M, Soheili ZS, Schmitz I, Sameie S, Schulz WA (2010) Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol 26:553–567

    Article  CAS  PubMed  Google Scholar 

  298. Minty F, Thurlow JK, Harrison PR, Parkinson EK (2008) Telomere dysfunction in human keratinocytes elicits senescence and a novel transcription profile. Exp Cell Res 314:2434–2447

    Article  CAS  PubMed  Google Scholar 

  299. Radiloff DR, Wakeman TP, Feng J, Schilling S, Seto E, Wang XF (2011) Trefoil factor 1 acts to suppress senescence induced by oncogene activation during the cellular transformation process. Proc Natl Acad Sci USA 108:6591–6596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  300. Tran PT, Shroff EH, Burns TF, Thiyagarajan S, Das ST, Zabuawala T, Chen J, Cho YJ, Luong R, Tamayo P, Salih T, Aziz K, Adam SJ, Vicent S, Nielsen CH, Withofs N, Sweet-Cordero A, Gambhir SS, Rudin CM, Felsher DW (2012) Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis. PLoS Genet 8:e1002650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  301. Kwok WK, Ling MT, Yuen HF, Wong YC, Wang X (2007) Role of p14ARF in TWIST-mediated senescence in prostate epithelial cells. Carcinogenesis 28:2467–2475

    Article  CAS  PubMed  Google Scholar 

  302. Wang T, Li Y, Wang W, Tuerhanjiang A, Wu Z, Yang R, Yuan M, Ma D, Wang W, Wang S (2014) Twist2, the key Twist isoform related to prognosis, promotes invasion of cervical cancer by inducing epithelial-mesenchymal transition and blocking senescence. Hum Pathol 45:1839–1846

    Article  CAS  PubMed  Google Scholar 

  303. Han J, Kim YL, Lee KW, Her NG, Ha TK, Yoon S, Jeong SI, Lee JH, Kang MJ, Lee MG, Ryu BK, Baik JH, Chi SG (2013) ZNF313 is a novel cell cycle activator with an E3 ligase activity inhibiting cellular senescence by destabilizing p21(WAF1.). Cell Death Differ 20:1055–1067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joe Nassour for critical reading of the manuscript. This work was supported by the Centre National de la Recherche Scientifique, the Université Lille 1, the Université Lille 2, the Ligue contre le Cancer (Comité du Pas-de-Calais and Comité de la Somme), the Institut Pasteur de Lille, and the SIRIC OncoLille (Grant INCa-DGOS-Inserm 6041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Abbadie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbadie, C., Pluquet, O. & Pourtier, A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses?. Cell. Mol. Life Sci. 74, 4471–4509 (2017). https://doi.org/10.1007/s00018-017-2587-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2587-9

Keywords

Navigation