Cellular and Molecular Life Sciences

, Volume 74, Issue 23, pp 4353–4367 | Cite as

Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens

  • Morgane Moulin
  • Javier Alguacil
  • Siyi Gu
  • Asmaa Mehtougui
  • Erin J. Adams
  • Suzanne Peyrottes
  • Eric Champagne
Original Article

Abstract

Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.

Keywords

Gamma delta T lymphocyte Nucleotide Cancer therapy Butyrophilin Innate immunity 

Notes

Acknowledgements

This work was financially supported by La Fondation pour la Recherche Médicale (FRM), Grant DCM20121225761. J. A. was supported by a post-doctoral fellowship from FRM.

Supplementary material

18_2017_2583_MOESM1_ESM.pdf (145 kb)
Supplementary material 1 (PDF 144 kb)
18_2017_2583_MOESM2_ESM.pdf (201 kb)
Supplementary material 2 (PDF 200 kb)
18_2017_2583_MOESM3_ESM.pdf (111 kb)
Supplementary material 3 (PDF 111 kb)

References

  1. 1.
    Adams EJ, Gu S, Luoma AM (2015) Human gamma delta T cells: evolution and ligand recognition. Cell Immunol 296:31–40CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chien YH, Meyer C, Bonneville M (2014) γδ T cells: first line of defense and beyond. Annu Rev Immunol 32:121–155CrossRefPubMedGoogle Scholar
  3. 3.
    Kabelitz D (2016) Human γδ T cells: from a neglected lymphocyte population to cellular immunotherapy: a personal reflection of 30 years of γδ T cell research. Clin Immunol 172:90–97CrossRefPubMedGoogle Scholar
  4. 4.
    Kobayashi H, Tanaka Y (2015) γδ T cell immunotherapy—a review. Pharmaceuticals 8:40–61CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gu S, Nawrocka W, Adams EJ (2014) Sensing of pyrophosphate metabolites by Vγ9Vδ2 T cells. Front Immunol 5:688PubMedGoogle Scholar
  6. 6.
    Harly C, Peigne CM, Scotet E (2014) Molecules and mechanisms implicated in the peculiar antigenic activation process of human Vγ9Vδ2 T cells. Front Immunol 5:657PubMedGoogle Scholar
  7. 7.
    Eberl M, Hintz M, Reichenberg A et al (2003) Microbial isoprenoid biosynthesis and human γδ T cell activation. FEBS Lett 544:4–10CrossRefPubMedGoogle Scholar
  8. 8.
    Kilcollins AM, Li J, Hsiao CH et al (2016) HMBPP analog prodrugs bypass energy-dependent uptake to promote efficient BTN3A1-mediated malignant cell lysis by Vγ9Vδ2 T lymphocyte effectors. J Immunol 197:419–428CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gober HJ, Kistowska M, Angman L et al (2003) Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    De Libero G, Lau SY, Mori L (2014) Phosphoantigen presentation to TCR γδ cells, a conundrum getting less gray zones. Front Immunol 5:679CrossRefPubMedGoogle Scholar
  11. 11.
    Harly C, Guillaume Y, Nedellec S et al (2012) Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120:2269–2279CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sandstrom A, Peigne CM, Leger A et al (2014) The intracellular B30.2 domain of butyrophilin 3A1 Binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity 40:490–500CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Karunakaran MM, Herrmann T (2014) The Vγ9Vδ2 T cell antigen receptor and butyrophilin-3 A1: models of interaction, the possibility of co-evolution, and the case of dendritic epidermal T cells. Front Immunol 5:648CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Palakodeti A, Sandstrom A, Sundaresan L et al (2012) The molecular basis for modulation of human Vγ9Vδ2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. J Biol Chem 287:32780–32790CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang H, Henry O, Distefano MD et al (2013) Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells. J Immunol 191:1029–1042CrossRefPubMedGoogle Scholar
  16. 16.
    Starick L, Riano F, Karunakaran MM et al (2017) Butyrophilin 3A (BTN3A, CD277)-specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. Eur J Immunol. doi: 10.1002/eji.201646818 (Epub ahead of print) PubMedGoogle Scholar
  17. 17.
    Vavassori S, Kumar A, Wan GS et al (2013) Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. Nat Immunol 14:908–916CrossRefPubMedGoogle Scholar
  18. 18.
    Peigne CM, Leger A, Gesnel MC et al (2017) The juxtamembrane domain of butyrophilin BTN3A1 controls phosphoantigen-mediated activation of human Vγ9Vδ2 T cells. J Immunol 198:4228–4234CrossRefPubMedGoogle Scholar
  19. 19.
    Rhodes DA, Chen HC, Price AJ et al (2015) Activation of human γδ T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. J Immunol 194:2390–2398CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sebestyen Z, Scheper W, Vyborova A et al (2016) RhoB mediates phosphoantigen recognition by Vγ9Vδ2 T cell receptor. Cell Rep 15:1973–1985CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Riano F, Karunakaran MM, Starick L et al (2014) Vγ9Vδ2 TCR-activation by phosphorylated antigens requires butyrophilin 3 A1 (BTN3A1) and additional genes on human chromosome 6. Eur J Immunol 44:2571–2576CrossRefPubMedGoogle Scholar
  22. 22.
    Constant P, Davodeau F, Peyrat MA et al (1994) Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 264:267–270CrossRefPubMedGoogle Scholar
  23. 23.
    Hintz M, Reichenberg A, Altincicek B et al (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett 509:317–322CrossRefPubMedGoogle Scholar
  24. 24.
    Poquet Y, Constant P, Halary F et al (1996) A novel nucleotide-containing antigen for human blood gamma delta T lymphocytes. Eur J Immunol 26:2344–2349CrossRefPubMedGoogle Scholar
  25. 25.
    Gruenbacher G, Nussbaumer O, Gander H et al (2014) Stress-related and homeostatic cytokines regulate Vγ9Vδ2 T-cell surveillance of mevalonate metabolism. Oncoimmunology 3:e953410CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vantourout P, Mookerjee-Basu J, Rolland C et al (2009) Specific requirements for Vγ9Vδ2 T cell stimulation by a natural adenylated phosphoantigen. J Immunol 183:3848–3857CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Monkkonen H, Ottewell PD, Kuokkanen J et al (2007) Zoledronic acid-induced IPP/ApppI production in vivo. Life Sci 81:1066–1070CrossRefPubMedGoogle Scholar
  28. 28.
    Monkkonen H, Auriola S, Lehenkari P et al (2006) A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br J Pharmacol 147:437–445CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Morita CT, Lee HK, Wang H et al (2001) Structural features of nonpeptide prenyl pyrophosphates that determine their antigenicity for human gamma delta T cells. J Immunol 167:36–41CrossRefPubMedGoogle Scholar
  30. 30.
    Tanaka Y, Morita CT, Tanaka Y et al (1995) Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 375:155–158CrossRefPubMedGoogle Scholar
  31. 31.
    Mookerjee-Basu J, Vantourout P, Martinez LO et al (2010) F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vγ9Vδ2 T cells. J Immunol 184:6920–6928CrossRefPubMedGoogle Scholar
  32. 32.
    Fisch P, Malkovsky M, Kovats S et al (1990) Recognition by human V gamma 9/V delta 2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250:1269–1273CrossRefPubMedGoogle Scholar
  33. 33.
    Dai Y, Chen H, Mo C et al (2012) Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human γδ T cells to induce innate anti-tumor/virus immunity. J Biol Chem 287:16812–16819CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Alguacil J, Reyes D, Aubin Y et al (2016) Exploring synthetic pathways for nucleosidic derivatives of potent phosphoantigens. New J Chem 40:6046–6052CrossRefGoogle Scholar
  35. 35.
    Boedec A, Sicard H, Dessolin J et al (2008) Synthesis and biological activity of phosphonate analogues and geometric isomers of the highly potent phosphoantigen (E)-1-hydroxy-2-methylbut-2-enyl 4-diphosphate. J Med Chem 51:1747–1754CrossRefPubMedGoogle Scholar
  36. 36.
    Hsiao CH, Lin X, Barney RJ et al (2014) Synthesis of a phosphoantigen prodrug that potently activates Vγ9Vδ2 T-lymphocytes. Chem Biol 21:945–954CrossRefPubMedGoogle Scholar
  37. 37.
    Davey MS, Lin CY, Roberts GW et al (2011) Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. PLoS Pathog 7:e1002040CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Morita CT, Beckman EM, Bukowski JF et al (1995) Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gamma delta T cells. Immunity 3:495–507CrossRefPubMedGoogle Scholar
  39. 39.
    Nerdal PT, Peters C, Oberg HH et al (2016) Butyrophilin 3A/CD277-dependent activation of human γδ T cells: accessory cell capacity of distinct leukocyte populations. J Immunol 197:3059–3068CrossRefPubMedGoogle Scholar
  40. 40.
    Valitutti S, Muller S, Dessing M et al (1996) Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J Exp Med 183:1917–1921CrossRefPubMedGoogle Scholar
  41. 41.
    Ma Q, Wang Y, Lo AS et al (2010) Cell density plays a critical role in ex vivo expansion of T cells for adoptive immunotherapy. J Biomed Biotechnol 2010:386545CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nussbaumer O, Gruenbacher G, Gander H et al (2013) Essential requirements of zoledronate-induced cytokine and γδ T cell proliferative responses. J Immunol 191:1346–1355CrossRefPubMedGoogle Scholar
  43. 43.
    Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human γδ T Cells. Science 309:264–268CrossRefPubMedGoogle Scholar
  44. 44.
    Gruenbacher G, Gander H, Rahm A et al (2016) Ecto-ATPase CD39 inactivates isoprenoid-derived Vγ9Vδ2 T cell phosphoantigens. Cell Rep 16:444–456CrossRefPubMedGoogle Scholar
  45. 45.
    Reichenberg A, Hintz M, Kletschek Y et al (2003) Replacing the pyrophosphate group of HMB-PP by a diphosphonate function abrogates Its potential to activate human γδ T cells but does not lead to competitive antagonism. Bioorg Med Chem Lett 13:1257–1260CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Morgane Moulin
    • 1
    • 2
    • 3
  • Javier Alguacil
    • 4
  • Siyi Gu
    • 5
  • Asmaa Mehtougui
    • 1
    • 2
    • 3
  • Erin J. Adams
    • 5
    • 6
  • Suzanne Peyrottes
    • 4
  • Eric Champagne
    • 1
    • 2
    • 3
  1. 1.Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282ToulouseFrance
  2. 2.CNRS, UMR5282ToulouseFrance
  3. 3.Université Toulouse III Paul-SabatierToulouseFrance
  4. 4.Institut des Biomolécules Max Mousseron, UMR 5247 CNRSUniversité Montpellier, ENSCRMontpellierFrance
  5. 5.Committee on ImmunologyUniversity of ChicagoChicagoUSA
  6. 6.Committee on Cancer BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations