Advertisement

Cellular and Molecular Life Sciences

, Volume 74, Issue 15, pp 2749–2760 | Cite as

S100A6 protein: functional roles

  • Rosario Donato
  • Guglielmo Sorci
  • Ileana Giambanco
Review

Abstract

S100A6 protein belongs to the A group of the S100 protein family of Ca2+-binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin β1 transduce some extracellular S100A6’s effects. Dosage of serum S100A6 might aid in diagnosis in oncology.

Keywords

S100A6 protein Proliferation Migration/motility Cancer Invasion Cytoskeleton Receptor 

Abbreviations

ALS

Amyotrophic lateral sclerosis

CacyBP/SIP

Calcyclin-binding protein/Siah-1-interacting protein

CDK

Cyclin-dependent kinase

EGF

Epidermal growth factor

Hsp

Heat shock protein

IL

Interleukin

MDM

Transformed mouse 3T3 cell double minute

NF-κB

Nuclear transcription factor κB

Nrf2

Nf-E2 related factor 2

PDGF

Platelet-derived growth factor

RAGE

Receptor for advanced glycation end product

ROS

Reactive oxygen species

SOD

Superoxide dismutase

Sp1

Specificity protein 1

TNF

Tumor necrosis factor

TRAIL

Tumor necrosis factor-related apoptosis-inducing ligand

USF

Upstream transcription factor

VEFG

Vascular endothelial growth factor

Notes

Acknowledgements

This work was supported by Associazione Italiana Ricerca sul Cancro (Project No. Project 17581). The authors wish to thanks the reviewers for criticism and suggestions.

References

  1. 1.
    Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13:24–57PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122PubMedCrossRefGoogle Scholar
  3. 3.
    Allen BG, Andrea JE, Sutherland C, Schönekess BO, Walsh MP (1997) Molecular cloning of chicken calcyclin (S100A6) and identification of putative isoforms. Biochem Cell Biol 75:733–738PubMedCrossRefGoogle Scholar
  4. 4.
    Hirschhorn RR, Aller P, Yuan Z-A, Gibson CW, Baserga R (1984) Cell-cycle specific cDNAs from mammalian cells temperature sensitive for growth. Proc Natl Acad Sci USA 87:6004–6008CrossRefGoogle Scholar
  5. 5.
    Calabretta B, Kaczmarek L, Mars W, Ochoa D, Gibson CW, Hirschhorn RR, Baserga R (1985) Cell-cycle-specific genes differentially expressed in human leukemias. Proc Natl Acad Sci USA 82:4463–4467PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Calabretta B, Battini R, Kaczmarek L, de Riel JK, Baserga R (1986) Molecular cloning of the cDNA for a growth factor-inducible gene with strong homology to S-100, a calcium-binding protein. J Biol Chem 261:12628–12632PubMedGoogle Scholar
  7. 7.
    Weterman MA, Stoopen GM, van Muijen GN, Kuznicki J, Ruiter DJ, Bloemers HP (1992) Expression of calcyclin in human melanoma cell lines correlates with metastatic behavior in nude mice. Cancer Res 52:1291–1296PubMedGoogle Scholar
  8. 8.
    Filipek A, Kuźnicki J (1998) Molecular cloning and expression of a mouse brain cDNA encoding a novel protein target of calcyclin. J Neurochem 70:1793–1798PubMedCrossRefGoogle Scholar
  9. 9.
    Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7:915–926PubMedCrossRefGoogle Scholar
  10. 10.
    Spiechowicz M, Zylicz A, Bieganowski P, Kuznicki J, Filipek A (2007) Hsp70 is a new target of Sgt1—an interaction modulated by S100A6. Biochem Biophys Res Commun 357:1148–1153PubMedCrossRefGoogle Scholar
  11. 11.
    Shimamoto S, Takata M, Tokuda M, Oohira F, Tokumitsu H, Kobayashi R (2008) Interactions of S100A2 and S100A6 with the tetratricopeptide repeat proteins, Hsp90/Hsp70-organizing protein and kinesin light chain. J Biol Chem 283:28246–28258PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Joo JH, Yoon SY, Kim JH, Paik SG, Min SR, Lim JS, Choe IS, Choi I, Kim JW (2008) S100A6 (calcyclin) enhances the sensitivity to apoptosis via the upregulation of caspase-3 activity in Hep3B cells. J Cell Biochem 103:1183–1197PubMedCrossRefGoogle Scholar
  13. 13.
    Słomnicki ŁP, Nawrot B, Leśniak W (2009) S100A6 binds p53 and affects its activity. Int J Biochem Cell Biol 41:784–790PubMedCrossRefGoogle Scholar
  14. 14.
    Tsoporis JN, Izhar S, Parker TG (2008) Expression of S100A6 in cardiac myocytes limits apoptosis induced by tumor necrosis factor-alpha. J Biol Chem 283:30174–33083PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mani RS, Kay CM (1992) Purification and characterization of a novel 12,000-Da calcium binding protein from smooth muscle. Arch Biochem Biophys 296:442–449PubMedCrossRefGoogle Scholar
  16. 16.
    Wills FL, McCubbin WD, Kay CM (1994) Smooth muscle calponin–caltropin interaction: effect on biological activity and stability of calponin. Biochemistry 33:5562–5569PubMedCrossRefGoogle Scholar
  17. 17.
    Golitsina NL, Kordowska J, Wang CL, Lehrer SS (1996) Ca2+-dependent binding of calcyclin to muscle tropomyosin. Biochem Biophys Res Commun 220:360–365PubMedCrossRefGoogle Scholar
  18. 18.
    Breen EC, Tang K (2003) Calcyclin (S100A6) regulates pulmonary fibroblast proliferation, morphology, and cytoskeletal organization in vitro. J Cell Biochem 88:848–854PubMedCrossRefGoogle Scholar
  19. 19.
    Thordarson G, Southard JN, Talamantes F (1991) Purification and characterization of mouse decidual calcyclin: a novel stimulator of mouse placental lactogen-II secretion. Endocrinology 129:1257–1265PubMedCrossRefGoogle Scholar
  20. 20.
    Okazaki K, Niki I, Iino S, Kobayashi S, Hidaka H (1994) A role of calcyclin, a Ca2+-binding protein, on the Ca2+-dependent insulin release from the pancreatic beta cell. J Biol Chem 269:6149–6152PubMedGoogle Scholar
  21. 21.
    Fujii T, Kuzumaki N, Ogoma Y, Kondo Y (1994) Effects of calcium-binding proteins on histamine release from permeabilized rat peritoneal mast cells. Biol Pharm Bull 17:581–585PubMedCrossRefGoogle Scholar
  22. 22.
    Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A (2007) S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 282:31317–31331PubMedCrossRefGoogle Scholar
  23. 23.
    Donato R (2007) RAGE: a single receptor for several ligands and different cellular responses. The case of certain S100 proteins. Curr Mol Med 7:711–724PubMedCrossRefGoogle Scholar
  24. 24.
    Jurewicz E, Góral A, Filipek A (2014) S100A6 is secreted from Wharton’s jelly mesenchymal stem cells and interacts with integrin β1. Int J Biochem Cell Biol 55:298–303PubMedCrossRefGoogle Scholar
  25. 25.
    Ghezzo F, Lauret E, Ferrari S, Baserga R (1988) Growth factor regulation of the promoter for calcyclin, a growth-regulated gene. J Biol Chem 263:4758–4763PubMedGoogle Scholar
  26. 26.
    Tonini GP, Casalaro A, Cara A, Di Martino D (1991) Inducible expression of calcyclin, a gene with strong homology to S-100 protein, during neuroblastoma cell differentiation and its prevalent expression in Schwann-like cell lines. Cancer Res 51:1733–1737PubMedGoogle Scholar
  27. 27.
    Hong EJ, Park SH, Choi KC, Leung PC, Jeung EB (2006) Identification of estrogen-regulated genes by microarray analysis of the uterus of immature rats exposed to endocrine disrupting chemicals. Reprod Biol Endocrinol 29(4):49CrossRefGoogle Scholar
  28. 28.
    Busch AK, Cordery D, Denyer GS, Biden TJ (2002) Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic beta-cell function. Diabetes 51:977–987PubMedCrossRefGoogle Scholar
  29. 29.
    Courtois-Coutry N, Le Moellic C, Boulkroun S, Fay M, Cluzeaud F, Escoubet B, Farman N, Blot-Chabaud M (2002) Calcyclin is an early vasopressin-induced gene in the renal collecting duct. Role in the long term regulation of ion transport. J Biol Chem 277:25728–25734PubMedCrossRefGoogle Scholar
  30. 30.
    Kucharczak J, Pannequin J, Camby I, Decaestecker C, Kiss R, Martinez J (2001) Gastrin induces over-expression of genes involved in human U373 glioblastoma cell migration. Oncogene 20:7021–7028PubMedCrossRefGoogle Scholar
  31. 31.
    Lewington AJ, Padanilam BJ, Hammerman MR (1997) Induction of calcyclin after ischemic injury to rat kidney. Am J Physiol 273:F380–F385PubMedGoogle Scholar
  32. 32.
    Breen EC, Fu Z, Normand H (1999) Calcyclin gene expression is increased by mechanical strain in fibroblasts and lung. Am J Respir Cell Mol Biol 21:746–752PubMedCrossRefGoogle Scholar
  33. 33.
    Orre LM, Pernemalm M, Lengqvist J, Lewensohn R, Lehtiö J (2007) Up-regulation, modification, and translocation of S100A6 induced by exposure to ionizing radiation revealed by proteomics profiling. Mol Cell Proteomics 6:2122–2131PubMedCrossRefGoogle Scholar
  34. 34.
    Leśniak W, Szczepańska A, Kuźnicki J (2005) Calcyclin (S100A6) expression is stimulated by agents evoking oxidative stress via the antioxidant response element. Biochim Biophys Acta 1744:29–37PubMedCrossRefGoogle Scholar
  35. 35.
    Tsoporis JN, Marks A, Haddad A, O’Hanlon D, Jolly S, Parker TG (2005) S100A6 is a negative regulator of the induction of cardiac genes by trophic stimuli in cultured rat myocytes. Exp Cell Res 303:471–481PubMedCrossRefGoogle Scholar
  36. 36.
    Leong S, Christopherson RI, Baxter RC (2007) Profiling of apoptotic changes in human breast cancer cells using SELDI-TOF mass spectrometry. Cell Physiol Biochem 20:579–590PubMedCrossRefGoogle Scholar
  37. 37.
    Leśniak W, Jezierska A, Kuźnicki J (2000) Upstream stimulatory factor is involved in the regulation of the human calcyclin (S100A6) gene. Biochim Biophys Acta 1517:73–81PubMedCrossRefGoogle Scholar
  38. 38.
    Joo JH, Kim JW, Lee Y, Yoon SY, Kim JH, Paik SG, Choe IS (2003) Involvement of NF-kappaB in the regulation of S100A6 gene expression in human hepatoblastoma cell line HepG2. Biochem Biophys Res Commun 307:274–280PubMedCrossRefGoogle Scholar
  39. 39.
    Thaisuchat H, Baumann M, Pontiller J, Hesse F, Ernst W (2011) Identification of a novel temperature sensitive promoter in CHO cells. BMC Biotechnol 11:51PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Króliczak W, Pietrzak M, Puzianowska-Kuznicka M (2008) P53-dependent suppression of the human calcyclin gene (S100A6): the role of Sp1 and of NFkappaB. Acta Biochim Pol 55:559–570PubMedGoogle Scholar
  41. 41.
    Otterbein LR, Kordowska J, Witte-Hoffmann C, Wang CL, Dominguez R (2002) Crystal structures of S100A6 in the Ca2+-free and Ca2+-bound states: the calcium sensor mechanism of S100 proteins revealed at atomic resolution. Structure 10:557–567PubMedCrossRefGoogle Scholar
  42. 42.
    Gross SR, Sin CG, Barraclough R, Rudland PS (2014) Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 71:1551–1579PubMedCrossRefGoogle Scholar
  43. 43.
    Bresnick AR, Weber DJ, Zimmer DB (2015) S100 proteins in cancer. Nat Rev Cancer 15:96–109PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Filipek A, Michowski W, Kuznicki J (2008) Involvement of S100A6 (calcyclin) and its binding partners in intracellular signaling pathways. Adv Enzyme Regul 48:225–239PubMedCrossRefGoogle Scholar
  45. 45.
    Fernandez-Fernandez MR, Rutherford TJ, Fersht AR (2008) Members of the S100 family bind p53 in two distinct ways. Protein Sci 17:1663–1670PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yang Q, O’Hanlon D, Heizmann CW, Marks A (1999) Demonstration of heterodimer formation between S100B and S100A6 in the yeast two-hybrid system and human melanoma. Exp Cell Res 246:501–509PubMedCrossRefGoogle Scholar
  47. 47.
    Deloulme JC, Assard N, Mbele GO, Mangin C, Kuwano R, Baudier J (2000) S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. J Biol Chem 275:35302–35310PubMedCrossRefGoogle Scholar
  48. 48.
    Filipek A, Heizmann CW, Kuźnicki J (1990) Calcyclin is a calcium and zinc binding protein. FEBS Lett 264:263–266PubMedCrossRefGoogle Scholar
  49. 49.
    Chen H, Xu C, Jin Q, Liu Z (2014) S100 protein family in human cancer. Am J Cancer Res 4:89–115PubMedPubMedCentralGoogle Scholar
  50. 50.
    Cross SS, Hamdy FC, Deloulme JC, Rehman I (2005) Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology 46:256–269PubMedCrossRefGoogle Scholar
  51. 51.
    Ito Y, Yoshida H, Tomoda C, Uruno T, Miya A, Kobayashi K, Matsuzuka F, Kakudo K, Kuma K, Miyauchi A (2005) Expression of S100A2 and S100A6 in thyroid carcinomas. Histopathology 46:569–575PubMedCrossRefGoogle Scholar
  52. 52.
    Zhao M, Wang KJ, Tan Z, Zheng CM, Liang Z, Zhao JQ (2016) Identification of potential therapeutic targets for papillary thyroid carcinoma by bioinformatics analysis. Oncol Lett 11:51–58PubMedGoogle Scholar
  53. 53.
    Ning X, Sun S, Zhang K, Liang J, Chuai Y, Li Y, Wang X (2012) S100A6 protein negatively regulates CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation and tumorigenesis. PLoS One 7:e30185PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chen X, Liu X, Lang H, Zhang S, Luo Y, Zhang J (2015) S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through β-catenin in pancreatic cancer cell line. PLoS One 10:e0121319PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lyu XJ, Li HZ, Ma X, Li XT, Gao Y, Ni D, Shen DL, Gu LY, Wang BJ, Zhang Y, Zhang X (2015) Elevated S100A6 (Calcyclin) enhances tumorigenesis and suppresses CXCL14-induced apoptosis in clear cell renal cell carcinoma. Oncotarget 6:6656–6669PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wasik U, Kadziolka B, Kilanczyk E, Filipek A (2016) Influence of S100A6 on CacyBP/SIP Phosphorylation and Elk-1 Transcriptional Activity in Neuroblastoma NB2a Cells. Cell Biochem 117:126–131CrossRefGoogle Scholar
  57. 57.
    Bao L, Odell AF, Stephen SL, Wheatcroft SB, Walker JH, Ponnambalam S (2012) The S100A6 calcium-binding protein regulates endothelial cell-cycle progression and senescence. FEBS J 279:4576–4588PubMedCrossRefGoogle Scholar
  58. 58.
    Lerchenmüller C, Heißenberg J, Damilano F, Bezzeridis VJ, Krämer I, Bochaton-Piallat ML, Hirschberg K, Busch M, Katus HA, Peppel K, Rosenzweig A, Busch H, Boerries M, Most P (2016) S100A6 regulates endothelial cell cycle progression by attenuating antiproliferative signal transducers and activators of transcription 1 signaling. Arterioscler Thromb Vasc Biol 36:1854–1867PubMedCrossRefGoogle Scholar
  59. 59.
    Graczyk A, Leśniak W (2014) S100A6 expression in keratinocytes and its impact on epidermal differentiation. Int J Biochem Cell Biol 57:135–141PubMedCrossRefGoogle Scholar
  60. 60.
    Zwadlo G, Briiggen J, Gerhards G, Schlegel R, Sorg C (1988) Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol 72:510–515PubMedPubMedCentralGoogle Scholar
  61. 61.
    Lagasse E, Weissman IL (1992) Mouse MRP8 and MRP14, two intracellular calcium-binding proteins associated with the development of the myeloid lineage. Blood 79:1907–1915PubMedGoogle Scholar
  62. 62.
    Arcuri C, Bianchi R, Brozzi F, Donato R (2005) S100B increases proliferation in PC12 neuronal cells and reduces their responsiveness to NGF via Akt activation. J Biol Chem 280:4402–4414PubMedCrossRefGoogle Scholar
  63. 63.
    Saito T, Ikeda T, Nakamura K et al (2007) S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Rep 8:504–509PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, Deloulme JC (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55:165–677PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Brozzi F, Arcuri C, Giambanco I, Donato R (2009) S100B protein regulates astrocyte shape and migration via interaction with Src kinase: implications for astrocyte development, activation and tumor growth. J Biol Chem 284:8797–8811PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tubaro C, Arcuri C, Giambanco I, Donato R (2011) S100B in myoblasts regulates the transition from activation to quiescence and from quiescence to activation, and reduces apoptosis. Biochim Biophys Acta Mol Cell Res 1813:1092–1104CrossRefGoogle Scholar
  67. 67.
    Beccafico S, Riuzzi F, Puglielli C, Mancinelli R, Fulle S, Sorci G, Donato R (2011) Human muscle satellite cells show age-related differential expression of S100B protein and RAGE. Age 33:523–541PubMedCrossRefGoogle Scholar
  68. 68.
    Duan L, Wu R, Zou Z, Wang H, Ye L, Li H, Yuan S, Li X, Zha H, Sun H, Zhang Y, Chen X, Zhou L (2014) S100A6 stimulates proliferation and migration of colorectal carcinoma cells through activation of the MAPK pathways. Int J Oncol 44:781–790PubMedGoogle Scholar
  69. 69.
    Meghnani V, Wagh A, Indurthi VS, Koladia M, Vetter SW, Law B, Leclerc E (2014) The receptor for advanced glycation end products influences the expression of its S100 protein ligands in melanoma tumors. Int J Biochem Cell Biol 57:54–62PubMedCrossRefGoogle Scholar
  70. 70.
    Mohan SK, Gupta AA, Yu C (2013) Interaction of the S100A6 mutant (C3S) with the V domain of the receptor for advanced glycation end products (RAGE). Biochem Biophys Res Commun 434:328–333PubMedCrossRefGoogle Scholar
  71. 71.
    Yatime L, Betzer C, Jensen RK, Mortensen S, Jensen PH, Andersen GR (2016) The structure of the RAGE: S100A6 complex reveals a unique mode of homodimerization for S100 proteins. Structure 24:2043–2052PubMedCrossRefGoogle Scholar
  72. 72.
    Lee YT, Dimitrova YN, Schneider G, Ridenour WB, Bhattacharya S, Soss SE, Caprioli RM, Filipek A, Chazin WJ (2008) Structure of the S100A6 complex with a fragment from the C-terminal domain of Siah-1 interacting protein: a novel mode for S100 protein target recognition. Biochemistry 47:10921–10932PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Li Y, Wagner ER, Yan Z, Wang Z, Luther G, Jiang W, Ye J, Wei Q, Wang J, Zhao L, Lu S, Wang X, Mohammed MK, Tang S, Liu H, Fan J, Zhang F, Zou Y, Song D, Liao J, Haydon RC, Luu HH, He TC (2015) The calcium-binding protein S100A6 accelerates human osteosarcoma growth by promoting cell proliferation and inhibiting osteogenic differentiation. Cell Physiol Biochem 37:2375–2392PubMedCrossRefGoogle Scholar
  74. 74.
    Kiryushko D, Novitskaya V, Soroka V et al (2006) Molecular mechanisms of Ca2+ signaling in neurons induced by the S100A4 protein. Mol Cell Biol 26:3625–3638PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Klingelhöfer J, Møller HD, Sumer EU, Berg CH, Poulsen M, Kiryushko D, Soroka V, Ambartsumian N, Grigorian M, Lukanidin EM (2009) Epidermal growth factor receptor ligands as new extracellular targets for the metastasis-promoting S100A4 protein. FEBS J 276:5936–5948PubMedCrossRefGoogle Scholar
  76. 76.
    Vogl T, Tenbrock K, Ludwig S et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049PubMedCrossRefGoogle Scholar
  77. 77.
    Yan WX, Armishaw C, Goyette J et al (2008) Mast cell and monocyte recruitment by S100A12 and its hinge domain. J Biol Chem 283:13035–13043PubMedCrossRefGoogle Scholar
  78. 78.
    Riuzzi F, Sorci G, Donato R (2011) S100B protein regulates myoblast proliferation and differentiation by activating FGFR1 in a bFGFdependent manner. J Cell Sci 124:2389–2400PubMedCrossRefGoogle Scholar
  79. 79.
    Leśniak W, Słomnicki ŁP, Filipek A (2009) S100A6—new facts and features. Biochem Biophys Res Commun 390:1087–1092PubMedCrossRefGoogle Scholar
  80. 80.
    Graczyk A, Słomnicki LP, Leśniak W (2013) S100A6 competes with the TAZ2 domain of p300 for binding to p53 and attenuates p53 acetylation. J Mol Biol 425:3488–3494PubMedCrossRefGoogle Scholar
  81. 81.
    Tamai H, Miyake K, Yamaguchi H, Takatori M, Dan K, Inokuchi K, Shimada T (2012) AAV8 vector expressing IL24 efficiently suppresses tumor growth mediated by specific mechanisms in MLL/AF4-positive ALL model mice. Blood 119:64–71PubMedCrossRefGoogle Scholar
  82. 82.
    Tamai H, Miyake K, Yamaguchi H, Shimada T, Dan K, Inokuchi K (2014) Inhibition of S100A6 induces GVL effects in MLL/AF4-positive ALL in human PBMC-SCID mice. Bone Marrow Transplant 49:699–703PubMedCrossRefGoogle Scholar
  83. 83.
    Ismail TM, Fernig DG, Rudland PS, Terry CJ, Wang G, Barraclough R (2008) The basic C-terminal amino acids of calcium binding protein S100A4 promote metastasis. Carcinogenesis 29:2259–2266PubMedCrossRefGoogle Scholar
  84. 84.
    Schmidt-Hansen B, Ornås D, Grigorian M et al (2004) Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene 23:5487–5495PubMedCrossRefGoogle Scholar
  85. 85.
    Forst B, Hansen MT, Klingelhöfer J et al (2010) Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice. PLoS One 5:e10374PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Al-Haddad S, Zhang Z, Leygue E, Snell L, Huang A, Niu Y et al (1999) Psoriasin (S100A7) expression and invasive breast cancer. Am J Pathol 155:2057–2066PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nasser MW, Qamri Z, Deol YS, Ravi J, Powell CA, Trikha P et al (2012) S100A7 enhances mammary tumorigenesis through upregulation of inflammatory pathways. Cancer Res 72:604–615PubMedCrossRefGoogle Scholar
  88. 88.
    Nasser MW, Wani NA, Ahirwar DK, Powell CA, Ravi J, Elbaz M et al (2015) RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment. Cancer Res 75:974–985PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermine lung metastasis. Nat Cell Biol 8:1369–1375PubMedCrossRefGoogle Scholar
  90. 90.
    Saha A, Lee YC, Zhang Z, Chandra G, Su SB, Mukherjee AB (2010) Lack of an endogenous anti-inflammatory protein in mice enhances colonization of B16F10 melanoma cells in the lungs. J Biol Chem 285:10822–10831PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Gaynor R, Irie R, Morton D, Herschman HR (1980) S100 protein is present in cultured human malignant melanomas. Nature 286:400–401PubMedCrossRefGoogle Scholar
  92. 92.
    Hauschild A, Engel G, Brenner W, Gläser R, Mönig H, Henze E, Christophers E (1999) S100B protein detection in serum is a significant prognostic factor in metastatic melanoma. Oncology 56:338–344PubMedCrossRefGoogle Scholar
  93. 93.
    Lin J, Yang Q, Yan Z, Markowitz J, Wilder PT, Carrier F, Weber DJ (2004) Inhibiting S100B restores p53 levels in primary malignant melanoma cancer cells. J Biol Chem 279:34071–34077PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang L, Liu W, Alizadeh D, Zhao D, Farrukh O, Lin J, Badie SA, Badie B (2011) S100B attenuates microglia activation in gliomas: possible role of STAT3 pathway. Glia 59:486–498PubMedCrossRefGoogle Scholar
  95. 95.
    Wang H, Zhang L, Zhang IY, Chen X, Da Fonseca A, Wu S, Ren H, Badie S, Sadeghi S, Ouyang M, Warden CD, Badie B (2013) S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Clin Cancer Res 19:3764–3775PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Holla FK, Postma TJ, Blankenstein MA, van Mierlo TJ, Vos MJ, Sizoo EM, de Groot M, Uitdehaag BM, Buter J, Klein M, Reijneveld JC, Heimans JJ (2016) Prognostic value of the S100B protein in newly diagnosed and recurrent glioma patients: a serial analysis. J Neurooncol 129:525–532PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Slomnicki LP, Lesniak W (2010) S100A6 (calcyclin) deficiency induces senescence-like changes in cell cycle, morphology and functional characteristics of mouse NIH 3T3 fibroblasts. J Cell Biochem 109:576–584PubMedGoogle Scholar
  98. 98.
    Luo X, Sharff KA, Chen J, He TC, Luu HH (2008) S100A6 expression and function in human osteosarcoma. Clin Orthop Relat Res 466:2060–2070PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Luu HH, Zhou L, Haydon RC, Deyrup AT, Montag AG, Huo D, Heck R, Heizmann CW, Peabody TD, Simon MA, He TC (2005) Increased expression of S100A6 is associated with decreased metastasis and inhibition of cell migration and anchorage independent growth in human osteosarcoma. Cancer Lett 229:135–148PubMedCrossRefGoogle Scholar
  100. 100.
    Nedjadi T, Kitteringham N, Campbell F, Jenkins RE, Park BK, Navarro P, Ashcroft F, Tepikin A, Neoptolemos JP, Costello E (2009) S100A6 binds to annexin 2 in pancreatic cancer cells and promotes pancreatic cancer cell motility. Br J Cancer 101:1145–1154PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ohuchida K, Mizumoto K, Ishikawa N, Fujii K, Konomi H, Nagai E, Yamaguchi K, Tsuneyoshi M, Tanaka M (2005) The role of S100A6 in pancreatic cancer development and its clinical implication as a diagnostic marker and therapeutic target. Clin Cancer Res 11:7785–7793PubMedCrossRefGoogle Scholar
  102. 102.
    Komatsu K, Kobune-Fujiwara Y, Andoh A, Ishiguro S, Hunai H, Suzuki N, Kameyama M, Murata K, Miyoshi J, Akedo H, Tatsuta M, Nakamura H (2000) Increased expression of S100A6 at the invading fronts of the primary lesion and liver metastasis in patients with colorectal adenocarcinoma. Br J Cancer 83:769–774PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Guo XJ, Chambers AF, Parfett CL, Waterhouse P, Murphy LC, Reid RE, Craig AM, Edwards DR, Denhardt DT (1990) Identification of a serum-inducible messenger RNA (5B10) as the mouse homologue of calcyclin: tissue distribution and expression in metastatic, ras-transformed NIH 3T3 cells. Cell Growth Differ 1:333–338PubMedGoogle Scholar
  104. 104.
    Mani RS, Kay CM (1990) Isolation and characterization of a novel molecular weight 11,000 Ca2+-binding protein from smooth muscle. Biochemistry 29:1398–1404PubMedCrossRefGoogle Scholar
  105. 105.
    Filipek A, Zasada A, Wojda U, Makuch R, Dabrowska R (1996) Characterization of chicken gizzard calcyclin and examination of its interaction with caldesmon. Comp Biochem Physiol B: Biochem Mol Biol 113:745–752CrossRefGoogle Scholar
  106. 106.
    Donato R (1983) Effect of S-100 protein on assembly of brain microtubule proteins in vitro. FEBS Lett 162:310–313PubMedCrossRefGoogle Scholar
  107. 107.
    Donato R (1987) Quantitative analysis of the interaction between S-100 proteins and brain tubulin. Cell Calcium 8:283–297PubMedCrossRefGoogle Scholar
  108. 108.
    Bianchi R, Giambanco I, Donato R (1993) S-100 protein, but not calmodulin, binds to and inhibits the polymerization of the glial fibrillary acidic protein in a Ca2+-dependent manner. J Biol Chem 268:12669–12674PubMedGoogle Scholar
  109. 109.
    Sorci G, Agneletti AL, Bianchi R, Donato R (1998) Association of S100B with intermediate filaments and microtubules in glial cells. Biochim Biophys Acta 1448:277–289PubMedCrossRefGoogle Scholar
  110. 110.
    Sorci G, Agneletti AL, Donato R (2000) Effects of S100A1 and S100B on microtubule stability. An in vitro study using triton-cytoskeletons from astrocyte and myoblast cell lines. Neuroscience 99:773–783PubMedCrossRefGoogle Scholar
  111. 111.
    Garbuglia M, Verzini M, Giambanco I, Spreca A, Donato R (1996) Effects of calcium-binding proteins (S100a0, S100a, S100b) on desmin assembly in vitro. FASEB J 10:317–324PubMedGoogle Scholar
  112. 112.
    Heierhorst J, Kobe B, Feil SC, Parker MW, Benian GM, Weiss KR, Kemp BE (1996) Ca2+/S100 regulation of giant protein kinases. Nature 380:636–639PubMedCrossRefGoogle Scholar
  113. 113.
    Yamasaki R, Berri M, Wu Y, Trombitás K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H (2001) Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J 81:2297–2313PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Most P, Pleger ST, Völkers M et al (2004) Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Investig 114:1550–1563PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Malashkevich VN, Dulyaninova NG, Ramagopal UA et al (2010) Phenothiazines inhibit S100A4 function by inducing protein oligomerization. Proc Natl Acad Sci USA 107:8605–8610PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Roth J, Burwinkel F, van den Bos C, Goebeler M, Vollmer E, Sorg C (1993) MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner. Blood 82:1875–1883PubMedGoogle Scholar
  117. 117.
    Goebeler M, Roth J, van den Bos C, Ader G, Sorg C (1995) Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. Biochem J 309:419–424PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Vogl T, Ludwig S, Goebeler M, Strey A, Thorey IS, Reichelt R, Foell D, Gerke V, Manitz MP, Nacken W, Werner S, Sorg C, Roth J (2004) MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood 104:4260–4268PubMedCrossRefGoogle Scholar
  119. 119.
    Yamada J, Jinno S (2014) S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus 24:89–101PubMedCrossRefGoogle Scholar
  120. 120.
    Acosta S, Mayol G, Rodríguez E, Lavarino C, de Preter K, Kumps C, Garcia I, de Torres C, Mora J (2011) Identification of tumoral glial precursor cells in neuroblastoma. Cancer Lett 312:73–81PubMedCrossRefGoogle Scholar
  121. 121.
    Tsoporis JN, Marks A, Haddad A, Dawood F, Liu PP, Parker TG (2005) S100B expression modulates left ventricular remodeling after myocardial infarction in mice. Circulation 111:598–606PubMedCrossRefGoogle Scholar
  122. 122.
    Tsoporis JN, Izhar S, Leong-Poi H, Desjardins JF, Huttunen HJ, Parker TG (2010) S100B interaction with the receptor for advanced glycation end products (RAGE): a novel receptor mediated mechanism for myocyte apoptosis postinfarction. Circ Res 106:93–101PubMedCrossRefGoogle Scholar
  123. 123.
    Tsoporis JN, Izhar S, Proteau G, Slaughter G, Parker TG (2011) S100B-RAGE dependent VEGF secretion by cardiac myocytes induces myofibroblast proliferation. J Mol Cell Cardiol 52:464–473PubMedCrossRefGoogle Scholar
  124. 124.
    Boom A, Pochet R, Authelet M, Pradier L, Borghgraef P, Van Leuven F, Heizmann CW, Brion JP (2004) Astrocytic calcium/zinc binding protein S100A6 overexpression in Alzheimer’s disease and in PS1/APP transgenic mice models. Biochim Biophys Acta 1742:161–168PubMedCrossRefGoogle Scholar
  125. 125.
    Hoyaux D, Boom A, Van den Bosch L, Belot N, Martin JJ, Heizmann CW, Kiss R, Pochet R (2002) S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients. J Neuropathol Exp Neurol 61:736–744PubMedCrossRefGoogle Scholar
  126. 126.
    Botelho HM, Leal SS, Cardoso I, Yanamandra K, Morozova-Roche LA, Fritz G, Gomes CM (2012) S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J Biol Chem 287:42233–42242PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Akiyama H, Ikeda K, Katoh M, McGeer EG, McGeer PL (1994) Expression of MRP14, 27E10, interferon-alpha and leukocyte common antigen by reactive microglia in postmortem human brain tissue. J Neuroimmunol 50:195–201PubMedCrossRefGoogle Scholar
  128. 128.
    Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022PubMedCrossRefGoogle Scholar
  129. 129.
    de Souza DF, Leite MC, Quincozes-Santos A, Nardin P, Tortorelli LS, Rigo MM, Gottfried C, Leal RB, Gonçalves CA (2009) S100B secretion is stimulated by IL-1beta in glial cultures and hippocampal slices of rats: likely involvement of MAPK pathway. J Neuroimmunol 206:52–57PubMedCrossRefGoogle Scholar
  130. 130.
    Roltsch E, Holcomb L, Young KA, Marks A, Zimmer DB (2010) PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation 7:78PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Yu AC (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8:67–68PubMedCrossRefGoogle Scholar
  132. 132.
    Mori T, Koyama N, Arendash GW, Horikoshi-Sakuraba Y, Tan J, Town T (2010) Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia 58:300–314PubMedPubMedCentralGoogle Scholar
  133. 133.
    Shepherd CE, Goyette J, Utter V, Rahimi F, Yang Z, Geczy CL, Halliday GM (2006) Inflammatory S100A9 and S100A12 proteins in Alzheimer’s disease. Neurobiol Aging 27:1554–1563PubMedCrossRefGoogle Scholar
  134. 134.
    Walker DG, Link J, Lue LF, Dalsing-Hernandez JE, Boyes BE (2006) Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J Leukoc Biol 79:596–610PubMedCrossRefGoogle Scholar
  135. 135.
    Chang KA, Kim HJ, Suh YH (2012) The role of S100a9 in the pathogenesis of Alzheimer’s disease: the therapeutic effects of S100a9 knockdown or knockout. Neurodegener Dis 10:27–29PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang C, Liu Y, Gilthorpe J, van der Maarel JR (2012) MRP14 (S100A9) protein interacts with Alzheimer beta-amyloid peptide and induces its fibrillization. PLoS One 7:e32953PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kummer MP, Vogl T, Axt D, Griep A, Vieira-Saecker A, Jessen F, Gelpi E, Roth J, Heneka MT (2012) Mrp14 deficiency ameliorates amyloid β burden by increasing microglial phagocytosis and modulation of amyloid precursor protein processing. J Neurosci 32:17824–17829PubMedCrossRefGoogle Scholar
  138. 138.
    Wilcock DM, Griffin WS (2013) Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J Neuroinflammation 10:84PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kim HJ, Chang KA, Ha TY, Kim J, Ha S, Shin KY, Moon C, Nacken W, Kim HS, Suh YH (2014) S100A9 knockout decreases the memory impairment and neuropathology in crossbreed mice of Tg2576 and S100A9 knockout mice model. PLoS One 9:e88924PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Gruden MA, Davydova TV, Wang C, Narkevich VB, Fomina VG, Kudrin VS, Morozova-Roche LA, Sewell RD (2016) The misfolded pro-inflammatory protein S100A9 disrupts memory via neurochemical remodelling instigating an Alzheimer’s disease-like cognitive deficit. Behav Brain Res 306:106–116PubMedCrossRefGoogle Scholar
  141. 141.
    Wang T, Liang Y, Thakur A, Zhang S, Yang T, Chen T, Gao L, Chen M, Ren H (2016) Diagnostic significance of S100A2 and S100A6 levels in sera of patients with non-small cell lung cancer. Tumor Biol 37:2299–2304CrossRefGoogle Scholar
  142. 142.
    Zhang J, Zhang K, Jiang X, Zhang J (2014) S100A6 as a potential serum prognostic biomarker and therapeutic target in gastric cancer. Dig Dis Sci 59:2136–2144PubMedCrossRefGoogle Scholar
  143. 143.
    Nishi M, Matsumoto K, Kobayashi M, Yanagita K, Matsumoto T, Nagashio R, Ishii D, Fujita T, Sato Y, Iwamura M (2014) Serum expression of S100A6 is a potential detection marker in patients with urothelial carcinoma in the urinary bladder. Biomed Res 35:351–356PubMedCrossRefGoogle Scholar
  144. 144.
    Wei BR, Hoover SB, Ross MM, Zhou W, Meani F, Edwards JB, Spehalski EI, Risinger JI, Alvord WG, Quiñones OA, Belluco C, Martella L, Campagnutta E, Ravaggi A, Dai RM, Goldsmith PK, Woolard KD, Pecorelli S, Liotta LA, Petricoin EF, Simpson RM (2009) Serum S100A6 concentration predicts peritoneal tumor burden in mice with epithelial ovarian cancer and is associated with advanced stage in patients. PLoS One 4:e7670PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Cai XY, Lu L, Wang YN, Jin C, Zhang RY, Zhang Q, Chen QJ, Shen WF (2011) Association of increased S100B, S100A6 and S100P in serum levels with acute coronary syndrome and also with the severity of myocardial infarction in cardiac tissue of rat models with ischemia-reperfusion injury. Atherosclerosis 217:536–5342PubMedCrossRefGoogle Scholar
  146. 146.
    Mocellin S, Zavagno G, Nitti D (2008) The prognostic value of serum S100B in patients with cutaneous melanoma: a meta-analysis. Int J Cancer 123:2370–2376PubMedCrossRefGoogle Scholar
  147. 147.
    McIlroy M, McCartan D, Early S et al (2010) Interaction of developmental transcription factor HOXC11 with steroid receptor coactivator SRC-1 mediates resistance to endocrine therapy in breast cancer [corrected]. Cancer Res 70:1585–1594PubMedCrossRefGoogle Scholar
  148. 148.
    Gautam P, Nair SC, Gupta MK, Sharma R, Polisetty RV, Uppin MS, Sundaram C, Puligopu AK, Ankathi P, Purohit AK, Chandak GR, Harsha HC, Sirdeshmukh R (2012) Proteins with altered levels in plasma from glioblastoma patients as revealed by iTRAQ-based quantitative proteomic analysis. PLoS One 7:e46153PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Wang L, Chang EW, Wong SC, Ong SM, Chong DQ, Ling KL (2013) Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 190:794–804PubMedCrossRefGoogle Scholar
  150. 150.
    Sun W, Xing B, Guo L, Liu Z, Mu J, Sun L, Wei H, Zhao X, Qian X, Jiang Y, He F (2016) Quantitative proteomics analysis of tissue interstitial fluid for identification of novel serum candidate diagnostic marker for hepatocellular carcinoma. Sci Rep 6:26499PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Rosario Donato
    • 1
    • 2
  • Guglielmo Sorci
    • 1
    • 2
  • Ileana Giambanco
    • 1
  1. 1.Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical SchoolUniversity of PerugiaPerugiaItaly
  2. 2.Department of Experimental Medicine, Istituto Interuniversitario di Miologia (Interuniversity Institute for Myology), Perugia Medical SchoolUniversity of PerugiaPerugiaItaly

Personalised recommendations