Skip to main content
Log in

Ultrastructural localization of 5-methylcytosine on DNA and RNA

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

DNA methylation is the major epigenetic modification and it is involved in the negative regulation of gene expression. Its alteration can lead to neoplastic transformation. Several biomolecular approaches are nowadays used to study this modification on DNA, but also on RNA molecules, which are known to play a role in different biological processes. RNA methylation is one of the most common RNA modifications and 5-methylcytosine presence has recently been suggested in mRNA. However, an analysis of nucleic acid methylation at electron microscope is still lacking. Therefore, we visualized DNA methylation status and RNA methylation sites in the interphase nucleus of HeLa cells and rat hepatocytes by ultrastructural immunocytochemistry and cytochemical staining. This approach represents an efficient alternative to study nucleic acid methylation. In particular, this ultrastructural method makes the visualization of this epigenetic modification on a single RNA molecule possible, thus overcoming the technical limitations for a (pre-)mRNA methylation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  3. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  4. Bird AP (1996) The relationship of DNA methylation to cancer. Cancer Surv 28:87–101

    CAS  PubMed  Google Scholar 

  5. Harrison A, Parle-McDermott A (2011) DNA methylation: a timeline of methods and applications. Front Genet 2:74. doi:10.3389/fgene.2011.00074

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gehrke CW, McCune RA, Gama-Sosa MA, Ehrlich M, Kuo KC (1984) Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in DNA. J Chromatogr 301:199–219

    Article  CAS  PubMed  Google Scholar 

  7. Bestor TH, Hellewell SB, Ingram VM (1984) Differentiation of two mouse cell lines is associated with hypomethylation of their genomes. Mol Cell Biol 4:1800–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang TH, Perry MR, Laux DE (1999) Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8:459–470

    Article  CAS  PubMed  Google Scholar 

  10. Gitan RS, Shi H, Chen CM, Yan PS, Huang TH (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12:158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weber M, Davies JJ, Wittig D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  12. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulfite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219. doi:10.1038/nature06745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257. doi:10.1038/nature09165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santos F, Hendrich B, Reik W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  CAS  PubMed  Google Scholar 

  15. Kobayakawa S, Miike K, Nakao M, Abe K (2007) Dynamic changes in the epigenomic state and nuclear organization of differentiating mouse embryonic stem cells. Genes Cells 12:447–460

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Miyanari Y, Shirane K, Nitta H, Kubota T, Ohashi H, Okamoto A, Sasaki H (2013) Sequence-specific microscopic visualization of DNA methylation status at satellite repeats in individual cell nuclei and chromosomes. Nucleic Acids Res 41:e186. doi:10.1093/nar/gkt766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Solís MT, Chakrabarti N, Corredor E (2014) Epigenetic changes accompany developmental programmed cell death in tapetum cells. Plant Cell Physiol 55:16–29. doi:10.1093/pcp/pct152

    Article  PubMed  Google Scholar 

  18. Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M (2013) Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 14:215. doi:10.1186/gb4143

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharp PA (2009) The centrality of RNA. Cell 136:577–580. doi:10.1016/j.cell.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  20. Liu N, Pan T (2015) RNA epigenetics. Transl Res 165:28–35. doi:10.1016/j.trsl.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Kellner S, Burhenne J, Helm M (2010) Detection of RNA modifications. RNA Biol 7:237–247

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Jia G (2014) Methylation modifications in eukaryotic messenger RNA. J Genet Genomics 41:21–33. doi:10.1016/j.jgg.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  23. Motorin Y, Lyko F, Helm M (2010) 5-Methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 38:1415–1430. doi:10.1093/nar/gkp1117

    Article  CAS  PubMed  Google Scholar 

  24. Squires JE, Patel HR, Nousch M (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033. doi:10.1093/nar/gks144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dundr M, Raska I (1993) Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res 208:275–281

    Article  CAS  PubMed  Google Scholar 

  26. Trentani A, Testillano PS, Risueño MC, Biggiogera M (2003) Visualization of transcription sites at electron microscope. Eur J Histochem 47:195–200

    Article  CAS  PubMed  Google Scholar 

  27. Jones RE, Okamura CS, Martin TE (1980) Immunofluorescent localization of the proteins of nuclear ribonucleoprotein complexes. J Cell Biol 86:235–243

    Article  CAS  PubMed  Google Scholar 

  28. Bochnig P, Reuter R, Bringmann P, Lührmann R (1987) A monoclonal antibody against 2,2,7-trimethylguanosine that reacts with intact, class U, small nuclear ribonucleoproteins as well as with 7-methylguanosine-capped RNAs. Eur J Biochem 168:461–467

    Article  CAS  PubMed  Google Scholar 

  29. Bernhard W (1969) A new staining procedure for electron microscopical cytology. J Ultrastruct Res 27:250–265

    Article  CAS  PubMed  Google Scholar 

  30. Biggiogera M, Fakan S (1998) Fine structural specific visualization of RNA on ultrathin sections. J Histochem Cytochem 46:389–395

    Article  CAS  PubMed  Google Scholar 

  31. Biggiogera M, Masiello I (2017) Visualizing RNA at electron microscopy by terbium citrate. In: Pellicciari C, Biggiogera M (eds) Histochemistry of single molecules, 1st edn. Springer, Pavia, pp 277–283

    Chapter  Google Scholar 

  32. Vazquez-Nin GH, Biggiogera M, Echeverrìa OM (1995) Activation of osmium ammine by SO2-generating chemicals for EM Feulgen-type staining of DNA. Eur J Histochem 39:101–106

    CAS  PubMed  Google Scholar 

  33. Masiello I, Biggiogera M (2017) Osmium ammine for staining DNA in electron microsocopy. In: Pellicciari C, Biggiogera M (eds) Histochemistry of single molecules, 1st edn. Springer, Pavia, pp 261–267

    Chapter  Google Scholar 

  34. Cmarko D, Verschure PJ, Otte AP, van Driel R, Fakan S (2003) Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci 116:335–343

    Article  CAS  PubMed  Google Scholar 

  35. Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S, Fu XD, Van Driel R, Fakan S (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after BrUTP-microinjection. Mol Biol Cell 10:211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fakan S (1994) Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol 4:86–90

    Article  CAS  PubMed  Google Scholar 

  37. Fakan S (2004) The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem Cell Biol 122:83–93. doi:10.1007/s00418-004-0681-1

    Article  CAS  PubMed  Google Scholar 

  38. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  39. Riggs AD (2002) X chromosome inactivation, differentiation, and DNA methylation revisited, with a tribute to Susumu Ohno. Cytogenet Genome Res 99:17–24

    Article  CAS  PubMed  Google Scholar 

  40. Geiman TM, Robertson KD (2002) Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem 87:117–125

    Article  CAS  PubMed  Google Scholar 

  41. Ngo TTM, Yoo J, Dai Q, Zhang Q, He C, Aksimentiev A (2016) Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nat Commun 7:10813. doi:10.1038/ncomms10813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Visa N, Puvion-Dutilleul F, Harper F, Bachellerie JP, Puvion E (1993) Intranuclear distribution of poly(A) RNA determined by electron microscope in situ hybridization. Exp Cell Res 208:19–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical assistance of Ms. Francine Flach and Ms. Paola Veneroni and for the critical review of the manuscript of Prof. Carlo Pellicciari and Prof. Antonella Forlino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Biggiogera.

Ethics declarations

Funding

This work was supported by Fondi di Ateneo per la Ricerca (F.A.R. 2013–2014) from the University of Pavia.

Integrity of research

The experiments described in this manuscript comply with the current Italian laws.

Conflict of interest

The authors declare that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masiello, I., Biggiogera, M. Ultrastructural localization of 5-methylcytosine on DNA and RNA. Cell. Mol. Life Sci. 74, 3057–3064 (2017). https://doi.org/10.1007/s00018-017-2521-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2521-1

Keywords

Navigation