Cellular and Molecular Life Sciences

, Volume 74, Issue 15, pp 2773–2782 | Cite as

Development of anticancer agents targeting the Hedgehog signaling

Review

Abstract

Hedgehog signaling is an evolutionarily conserved pathway which is essential in embryonic and postnatal development as well as adult organ homeostasis. Abnormal regulation of Hedgehog signaling is implicated in many diseases including cancer. Consequently, substantial efforts have made in the past to develop potential therapeutic agents that specifically target the Hedgehog signaling for cancer treatment. Here, we review the therapeutic agents for inhibition of the Hedgehog signaling and their clinical advances in cancer treatment.

Keywords

Hedgehog signaling Patched Smothern Cancer Small molecules Therapeutic Drugs Safety and clinic 

Notes

Acknowledgements

This work was supported by the seed fund of College of Veterinary Medicine at Western University of Health Sciences and Faculty Development Grant from Chinese American Faculty Association of Southern California (CAFA). The authors would like to acknowledge ChemAxon (http://www.chemaxon.com) for providing an academic license to their software.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801PubMedCrossRefGoogle Scholar
  2. 2.
    Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–3087PubMedCrossRefGoogle Scholar
  3. 3.
    O’Hara WA et al (2011) Desert hedgehog is a mammal-specific gene expressed during testicular and ovarian development in a marsupial. BMC Dev Biol 11Google Scholar
  4. 4.
    Kumar S, Balczarek KA, Lai ZC (1996) Evolution of the hedgehog gene family. Genetics 142(3):965–972PubMedPubMedCentralGoogle Scholar
  5. 5.
    Pathi S et al (2001) Comparative biological responses to human Sonic, Indian, and Desert Hedgehog. Mech Dev 106(1–2):107–117PubMedCrossRefGoogle Scholar
  6. 6.
    Patten I, Placzek M (2000) The role of Sonic Hedgehog in neural tube patterning. CMLS Cell Mol Life Sci 57(12):1695–1708PubMedCrossRefGoogle Scholar
  7. 7.
    Perron M et al (2003) A novel function for Hedgehog signalling in retinal pigment epithelium differentiation. Development 130(8):1565–1577PubMedCrossRefGoogle Scholar
  8. 8.
    Echelard Y et al (1993) Sonic-Hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of Cns polarity. Cell 75(7):1417–1430PubMedCrossRefGoogle Scholar
  9. 9.
    Vortkamp A et al (1996) Regulation of rate of cartilage differentiation by Indian Hedgehog and PTH-related protein. Science 273(5275):613–622PubMedCrossRefGoogle Scholar
  10. 10.
    Szczepny A, Hime GR, Loveland KL (2006) Expression of Hedgehog signalling components in adult mouse testis. Dev Dyn 235(11):3063–3070PubMedCrossRefGoogle Scholar
  11. 11.
    Mirsky R et al (1999) Schwann cell-derived desert Hedgehog signals nerve sheath formation. Ann N Y Acad Sci 883:196–202PubMedCrossRefGoogle Scholar
  12. 12.
    Parmantier E et al (1999) Schwann cell-derived Desert Hedgehog controls the development of peripheral nerve sheaths. Neuron 23(4):713–724PubMedCrossRefGoogle Scholar
  13. 13.
    Varjosalo M et al (2008) Application of active and kinase-deficient kinome collection for identification of kinases regulating Hedgehog signaling. Cell 133(3):537–548PubMedCrossRefGoogle Scholar
  14. 14.
    Varjosalo M, Taipale J (2007) Hedgehog signaling. J Cell Sci 120(Pt 1):3–6PubMedCrossRefGoogle Scholar
  15. 15.
    Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22(18):2454–2472PubMedCrossRefGoogle Scholar
  16. 16.
    Ryan KE, Chiang C (2012) Hedgehog secretion and signal transduction in vertebrates. J Biol Chem 287(22):17905–17913PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Habib JG, O’Shaughnessy JA (2016) The hedgehog pathway in triple-negative breast cancer. Cancer Med 5(10):2989–3006PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Scales SJ, de Sauvage FJ (2009) Sauvage, mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci 30(6):303–312PubMedCrossRefGoogle Scholar
  19. 19.
    Kogerman P et al (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1(5):312–319PubMedCrossRefGoogle Scholar
  20. 20.
    Stone DM et al (1999) Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J Cell Sci 112(Pt 23):4437–4448PubMedGoogle Scholar
  21. 21.
    Rubin LL, de FJ (2006) Sauvage, Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 5(12):1026–1033PubMedCrossRefGoogle Scholar
  22. 22.
    Merchant AA, Matsui W (2010) Targeting Hedgehog–a cancer stem cell pathway. Clin Cancer Res 16(12):3130–3140PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Clement V et al (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172PubMedCrossRefGoogle Scholar
  24. 24.
    Bar EE et al (2007) Cyclopamine-mediated Hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25(10):2524–2533PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dierks C et al (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14(3):238–249PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao C et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458(7239):776–779PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Justilien V et al (2014) The PRKCI and SOX2 oncogenes are Co-amplified and cooperate to activate Hedgehog signaling in lung squamous cell carcinoma. Cancer Cell 25(2):139–151PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kinzler KW et al (1987) Identification of an amplified, highly expressed gene in a human glioma. Science 236(4797):70–73PubMedCrossRefGoogle Scholar
  29. 29.
    Hahn H et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85(6):841–851PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson RL et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272(5268):1668–1671PubMedCrossRefGoogle Scholar
  31. 31.
    Wolter M et al (1997) Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 57(13):2581–2585PubMedGoogle Scholar
  32. 32.
    Lam CW et al (2002) Novel mutations in the PATCHED gene in basal cell nevus syndrome. Mol Genet Metab 76(1):57–61PubMedCrossRefGoogle Scholar
  33. 33.
    Xie J et al (1997) Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 57(12):2369–2372PubMedGoogle Scholar
  34. 34.
    Xie J et al (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391(6662):90–92PubMedCrossRefGoogle Scholar
  35. 35.
    Yan T et al (2008) Patched-one or smoothened gene mutations are infrequent in chondrosarcoma. Clin Orthop Relat Res 466(9):2184–2189PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Taylor MD et al (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31(3):306–310PubMedCrossRefGoogle Scholar
  37. 37.
    Brugieres L et al (2010) Incomplete penetrance of the predisposition to medulloblastoma associated with germ-line SUFU mutations. J Med Genet 47(2):142–144PubMedCrossRefGoogle Scholar
  38. 38.
    Slade I et al (2011) Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma. Fam Cancer 10(2):337–342PubMedCrossRefGoogle Scholar
  39. 39.
    Berman DM et al (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425(6960):846–851PubMedCrossRefGoogle Scholar
  40. 40.
    Watkins DN et al (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422(6929):313–317PubMedCrossRefGoogle Scholar
  41. 41.
    Thayer SP et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425(6960):851–856PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sicklick JK et al (2006) Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 27(4):748–757PubMedCrossRefGoogle Scholar
  43. 43.
    Karhadkar SS et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431(7009):707–712PubMedCrossRefGoogle Scholar
  44. 44.
    Kubo M et al (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64(17):6071–6074PubMedCrossRefGoogle Scholar
  45. 45.
    Yauch RL et al (2008) A paracrine requirement for Hedgehog signalling in cancer. Nature 455(7211):406–410PubMedCrossRefGoogle Scholar
  46. 46.
    Tian H et al (2009) Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA 106(11):4254–4259PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Nolan-Stevaux O et al (2009) GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23(1):24–36PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Liu G et al (2006) Analysis of gene expression and chemoresistance of CD133(+)cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Delude C (2011) Tumorigenesis: testing ground for cancer stem cells. Nature 480(7377):S43–S45PubMedCrossRefGoogle Scholar
  50. 50.
    Chen J et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Peacock CD et al (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104(10):4048–4053PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ericson J et al (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87(4):661–673PubMedCrossRefGoogle Scholar
  53. 53.
    Bosanac I et al (2009) The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling. Nat Struct Mol Biol 16(7):691–697PubMedCrossRefGoogle Scholar
  54. 54.
    Coon V et al (2010) Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma. Mol Cancer Ther 9(9):2627–2636PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chang Q et al (2013) Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. Int J Cancer 133(1):225–234PubMedCrossRefGoogle Scholar
  56. 56.
    Petrova E et al (2013) Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling. Nat Chem Biol 9(4):247–249PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Buglino JA, Resh MD (2008) Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 283(32):22076–22088PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Mann RK, Beachy PA (2004) Novel lipid modifications of secreted protein signals. Annu Rev Biochem 73:891–923PubMedCrossRefGoogle Scholar
  59. 59.
    Goetz JA et al (2006) A highly conserved amino-terminal region of sonic hedgehog is required for the formation of its freely diffusible multimeric form. J Biol Chem 281(7):4087–4093PubMedCrossRefGoogle Scholar
  60. 60.
    Matevossian A, Resh MD (2015) Hedgehog Acyltransferase as a target in estrogen receptor positive, HER2 amplified, and tamoxifen resistant breast cancer cells. Molecular Cancer 14Google Scholar
  61. 61.
    Petrova E, Matevossian A, Resh MD (2015) Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma. Oncogene 34(2):263–268PubMedCrossRefGoogle Scholar
  62. 62.
    Rodgers UR et al (2016) Characterization of Hedgehog acyltransferase inhibitors identifies a small molecule probe for Hedgehog signaling by cancer cells. ACS Chem Biol 11(12):3256–3262PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cooper MK et al (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280(5369):1603–1607PubMedCrossRefGoogle Scholar
  64. 64.
    Chen JK et al (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16(21):2743–2748PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Varnat F et al (2009) Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 1(6–7):338–351PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Feldmann G et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67(5):2187–2196PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Sanchez P, A.R.I. Altaba (2005) In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice. Mech Dev 122(2):223–230PubMedCrossRefGoogle Scholar
  68. 68.
    Tabs S, Avci O (2004) Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur J Dermatol 14(2):96–102PubMedGoogle Scholar
  69. 69.
    Mimeault M et al (2010) Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells. Mol Cancer Ther 9(3):617–630PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lee ST et al (2014) Cyclopamine: from cyclops lambs to cancer treatment. J Agric Food Chem 62(30):7355–7362PubMedCrossRefGoogle Scholar
  71. 71.
    Tremblay MR et al (2009) Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 52(14):4400–4418PubMedCrossRefGoogle Scholar
  72. 72.
    Campbell VT et al (2011) Direct targeting of the Hedgehog pathway in primary chondrosarcoma xenografts with the Smoothened inhibitor IPI-926. Cancer Res 71Google Scholar
  73. 73.
    Goff RD, Thorson JS (2012) Enhancement of cyclopamine via conjugation with nonmetabolic sugars. Org Lett 14(10):2454–2457PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Olive KP et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a Mouse model of pancreatic cancer. Science 324(5933):1457–1461PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Jimeno A et al (2013) Phase I study of the Hedgehog pathway inhibitor IPI-926 in adult patients with solid tumors. Clin Cancer Res 19(10):2766–2774PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sekulic A et al (2012) Efficacy and safety of the Hedgehog pathway inhibitor vismodegib in patients with advanced basal cell carcinoma (Bcc): 12-month erivance bcc study update. Ann Oncol 23:362–362Google Scholar
  77. 77.
    Chang A et al (2012) Efficacy and safety of vismodegib in advanced basal cell carcinoma. J Invest Dermatol 132:S93–S93Google Scholar
  78. 78.
    Rimkus TK et al (2016) Targeting the Sonic Hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 8(2)Google Scholar
  79. 79.
    Danial C et al (2016) An Investigator-initiated open-label trial of sonidegib in advanced basal cell carcinoma patients resistant to vismodegib. Clin Cancer Res 22(6):1325–1329PubMedCrossRefGoogle Scholar
  80. 80.
    Ahnert JR et al (2010) A phase I dose-escalation study of LDE225, a smoothened (Smo) antagonist, in patients with advanced solid tumors. J Clin Oncol 28(15)Google Scholar
  81. 81.
    Munchhof MJ et al (2012) Discovery of PF-04449913, a potent and orally bioavailable inhibitor of smoothened. ACS Med Chem Lett 3(2):106–111PubMedCrossRefGoogle Scholar
  82. 82.
    Fukushima N et al (2016) Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells. Cancer Sci 107(10):1422–1429PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jamieson C et al (2011) Phase 1 dose-escalation study of PF-04449913, an oral Hedgehog (Hh) inhibitor, in patients with select hematologic malignancies. Blood 118(21):195–196Google Scholar
  84. 84.
    Wagner AJ et al (2015) A phase I study of PF-04449913, an oral Hedgehog inhibitor, in patients with advanced solid tumors. Clin Cancer Res 21(5):1044–1051PubMedCrossRefGoogle Scholar
  85. 85.
    Martinelli G et al (2015) Treatment with PF-04449913, an oral smoothened antagonist, in patients with myeloid malignancies: a phase 1 safety and pharmacokinetics study. Lancet Haematol 2(8):E339–E346PubMedCrossRefGoogle Scholar
  86. 86.
    Wang C et al (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Bender MH et al (2011) Identification and characterization of a novel smoothened antagonist for the treatment of cancer with deregulated Hedgehog signaling. Cancer Res 71Google Scholar
  88. 88.
    Yauch RL et al (2009) Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326(5952):572–574PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Pricl S et al (2015) Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma. Mol Oncol 9(2):389–397PubMedCrossRefGoogle Scholar
  90. 90.
    Atwood SX et al (2015) Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell 27(3):342–353PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Gonnissen A, Isebaert S, Haustermans K (2015) Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 6(16):13899–13913PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lauth M et al (2007) Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 104(20):8455–8460PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Srivastava RK et al (2014) GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget 5(23):12151–12165PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mazumdar T et al (2011) Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res 71(3):1092–1102PubMedCrossRefGoogle Scholar
  95. 95.
    Chen Q et al (2014) Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin beta4-mediated FAK signaling. PLoS One 9(2):e88386PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Shahi MH, Holt R, Rebhun RB (2014) Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells. PLoS One 9(5):e96593PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hyman JM et al (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci USA 106(33):14132–14137PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kim J et al (2010) Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci USA 107(30):13432–13437PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Beauchamp EM et al (2011) Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest 121(1):148–160PubMedCrossRefGoogle Scholar
  100. 100.
    Cai X et al (2015) Synergistic inhibition of colon carcinoma cell growth by Hedgehog-Gli1 inhibitor arsenic trioxide and phosphoinositide 3-kinase inhibitor LY294002. Onco Targets Ther 8:877–883PubMedPubMedCentralGoogle Scholar
  101. 101.
    Nakamura S et al (2013) Arsenic trioxide prevents osteosarcoma growth by inhibition of GLI transcription via DNA damage accumulation. PLoS One 8(7):e69466PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Yang D et al (2013) Arsenic trioxide inhibits the Hedgehog pathway which is aberrantly activated in acute promyelocytic leukemia. Acta Haematol 130(4):260–267PubMedCrossRefGoogle Scholar
  103. 103.
    You M et al (2014) Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg 147(1):508–516PubMedCrossRefGoogle Scholar
  104. 104.
    List A et al (2003) Opportunities for Trisenox (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia 17(8):1499–1507PubMedCrossRefGoogle Scholar
  105. 105.
    Scott, A.I.F. et al (1991) Inpatient major depression—is rolipram as effective as amitriptyline. Eur J Clin Pharmacol 40(2):127–129PubMedGoogle Scholar
  106. 106.
    Torphy TJ, Undem BJ (1991) Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax 46(7):512–523PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Izikki M et al (2009) Effects of roflumilast, a phosphodiesterase-4 inhibitor, on hypoxia- and monocrotaline-induced pulmonary hypertension in rats. J Pharmacol Exp Ther 330(1):54–62PubMedCrossRefGoogle Scholar
  108. 108.
    Drees M, Zimmermann R, Eisenbrand G (1993) 3′,5′-Cyclic nucleotide phosphodiesterase in tumor-cells as potential target for tumor-growth inhibition. Cancer Res 53(13):3058–3061PubMedGoogle Scholar
  109. 109.
    Sengupta R et al (2011) Treating brain tumors with PDE4 inhibitors. Trends Pharmacol Sci 32(6):337–344PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Pullamsetti SS et al (2013) Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene 32(9):1121–1134PubMedCrossRefGoogle Scholar
  111. 111.
    Tsunoda T et al (2012) Inhibition of phosphodiesterase-4 (PDE4) activity triggers luminal apoptosis and AKT dephosphorylation in a 3-D colonic-crypt model. Mol Cancer 11:46PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Powers GL et al (2015) Phosphodiesterase 4D inhibitors limit prostate cancer growth potential. Mol Cancer Res 13(1):149–160PubMedCrossRefGoogle Scholar
  113. 113.
    Ge X et al (2015) Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma. Elife 4, e07068Google Scholar
  114. 114.
    Williams CH et al (2015) An in vivo chemical genetic screen identifies phosphodiesterase 4 as a pharmacological target for hedgehog signaling inhibition. Cell Rep 11(1):43–50PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Giembycz MA, Field SK (2010) Roflumilast: first phosphodiesterase 4 inhibitor approved for treatment of COPD. Drug Des Devel Ther 4:147–158PubMedPubMedCentralGoogle Scholar
  116. 116.
    Zerilli T, Ocheretyaner E (2015) Apremilast (Otezla): a new oral treatment for adults with psoriasis and psoriatic arthritis. Pharm Ther 40(8):495–500Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Xiangqian Zhang
    • 1
  • Ye Tian
    • 1
  • Yanling Yang
    • 2
  • Jijun Hao
    • 3
    • 4
  1. 1.College of Life ScienceYan’an UniversityYan’anChina
  2. 2.Medical CollegeYan’an UniversityYan’anChina
  3. 3.College of Veterinary MedicineWestern University of Health SciencesPomonaUSA
  4. 4.Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaUSA

Personalised recommendations