Cellular and Molecular Life Sciences

, Volume 74, Issue 15, pp 2761–2771 | Cite as

The acidic microenvironment as a possible niche of dormant tumor cells

  • Silvia Peppicelli
  • Elena Andreucci
  • Jessica Ruzzolini
  • Anna Laurenzana
  • Francesca Margheri
  • Gabriella Fibbi
  • Mario Del Rosso
  • Francesca Bianchini
  • Lido Calorini


Although surgical excision, chemo-, and radio-therapy are clearly advanced, tumors may relapse due to cells of the so-called “minimal residual disease”. Indeed, small clusters of tumor cells persist in host tissues after treatment of the primary tumor elaborating strategies to survive and escape from immunological attacks before their relapse: this variable period of remission is known as “cancer dormancy”. Therefore, it is crucial to understand and consider the major concepts addressing dormancy, to identify new targets and disclose potential clinical strategies. Here, we have particularly focused the relationships between tumor microenvironment and cancer dormancy, looking at a re-appreciated aspect of this compartment that is the low extracellular pH. Accumulating evidences indicate that acidity of tumor microenvironment is associated with a poor prognosis of tumor-bearing patients, stimulates a chemo- and radio-therapy resistant phenotype, and suppresses the tumoricidal activity of cytotoxic lymphocytes and natural killer cells, and all these aspects are useful for dormancy. Therefore, this review discusses the possibility that acidity of tumor microenvironment may provide a new, not previously suggested, adequate milieu for “dormancy” of tumor cells.


Acidosis Tumor microenvironment Dormancy 



This study was financially supported by grants from Istituto Toscano Tumori, Ente Cassa di Risparmio di Firenze.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wheelock EF, Weinhold KJ, Levich J (1981) The tumor dormant state. Adv Cancer Res 34:107–140PubMedCrossRefGoogle Scholar
  3. 3.
    Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153PubMedCrossRefGoogle Scholar
  4. 4.
    Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Ins 98:316–325CrossRefGoogle Scholar
  5. 5.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899PubMedCrossRefGoogle Scholar
  6. 6.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713PubMedCrossRefGoogle Scholar
  8. 8.
    Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47:885–895PubMedGoogle Scholar
  9. 9.
    Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233PubMedCrossRefGoogle Scholar
  10. 10.
    Miller DM, Thomas SD, Islam A, Muench D, Sedoris K (2012) c-Myc and cancer metabolism. Clin Cancer Res 18:5546–5553PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    DeBerardinis RJ (2008) Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med 10:767–777PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925PubMedCrossRefGoogle Scholar
  13. 13.
    Menon S, Manning BD (2008) Common corruption of the mTOR signaling network in human tumors. Oncogene 27(Suppl 2):S43–S51PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Brand KA, Hermfisse U (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 11:388–395PubMedGoogle Scholar
  15. 15.
    Ebert BL, Firth JD, Ratcliffe PJ (1995) Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter1 via distinct Cis-acting sequences. J Biol Chem 270:29083–29089PubMedCrossRefGoogle Scholar
  16. 16.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switchrequired for cellular adaptation to hypoxia. Cell Metab 3:177–185PubMedCrossRefGoogle Scholar
  17. 17.
    Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P et al (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271:32529–32537PubMedCrossRefGoogle Scholar
  18. 18.
    Cairns RA, Harris I, McCracken S, Mak TW (2011) Cancer cell metabolism. Cold Spring Harbor Symp Quant Biol 76:299–311PubMedCrossRefGoogle Scholar
  19. 19.
    Parks SK, Chiche J, Pouysségur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13:611–623PubMedCrossRefGoogle Scholar
  20. 20.
    Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677PubMedCrossRefGoogle Scholar
  21. 21.
    Ihnatko R, Kubes M, Takacova M, Sedlakova O, Sedlak J, Pastorek J, Kopacek J, Pastorekova S (2006) Extracellular acidosis elevates carbonic anhydrase IX in human glioblastoma cells via transcriptional modulation that does not depend on hypoxia. Int J Oncol 29:1025–1033PubMedGoogle Scholar
  22. 22.
    Calorini L, Peppicelli S, Bianchini F (2012) Extracellular acidity as favouring factor of tumor progression and metastatic dissemination. Exp Oncol 34:79–84PubMedGoogle Scholar
  23. 23.
    Pouysségur J, Franchi A, L’Allemain G, Paris S (1985) Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett 190:115–119PubMedCrossRefGoogle Scholar
  24. 24.
    Avnet S, Di Pompo G, Lemma S, Salerno M, Perut F, Bonuccelli G, Granchi D, Zini N, Baldini N (2013) V-ATPase is a candidate therapeutic target for Ewing sarcoma. Biochim Biophys Acta 1832:1105–1116PubMedCrossRefGoogle Scholar
  25. 25.
    Balgi AD, Diering GH, Donohue E, Lam KK, Fonseca BD, Zimmerman C, Numata M, Roberge M (2011) Regulation of mTORC1 signaling by pH. PLoS One 6:e21549PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK (2004) Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64:7336–7345PubMedCrossRefGoogle Scholar
  27. 27.
    Peppicelli S, Toti A, Giannoni E, Bianchini F, Margheri F, Del Rosso M, Calorini L (2016) Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation. Cell Cycle 15:1908–1918PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Thaiparambil JT, Eggers CM, Marcus AI (2012) AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain. Mol Cell Biol 32:3203–3217PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gillies RJ, Deamer DW (1979) Intracellular pH changes during the cell cycle in Tetrahymena. J Cell Physiol 100:23–31PubMedCrossRefGoogle Scholar
  30. 30.
    Putney LK, Barber DL (2003) Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem 278:44645–44649PubMedCrossRefGoogle Scholar
  31. 31.
    Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, Schewe DM, Aguirre-Ghiso JA (2013) TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat Cell Biol 15:1351–1361PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Baumann F, Leukel P, Doerfelt A, Beier CP, Dettmer K, Oefner PJ, Kastenberger M, Kreutz M, Nickl-Jockschat T, Bogdahn U, Bosserhoff AK, Hau P (2009) Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol 11:368–380PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ahmed S, Tsuchiya T (2004) Novel mechanism of tumorigenesis: increased transforming growth factor-beta 1 suppresses the expression of connexin 43 in BALB/cJ mice after implantation of poly-l-lactic acid. J Biomed Mater Res A 70:335–340PubMedCrossRefGoogle Scholar
  34. 34.
    Peppicelli S, Bianchini F, Toti A, Laurenzana A, Fibbi G, Calorini L (2015) Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression. Cell Cycle 14:3088–3100PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Peppicelli S, Bianchini F, Torre E, Calorini L (2014) Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clin Exp Metastasis 31:423–433PubMedCrossRefGoogle Scholar
  36. 36.
    Xue L, Lucocq JM (1997) Low extracellular pH induces activation of ERK 2, JNK, and p38 in A431 and Swiss 3 T3 cells. Biochem Biophys Res Commun 241:236–242PubMedCrossRefGoogle Scholar
  37. 37.
    Sarosi GA, Jaiswal K, Herndon E, Lopez-Guzman C, Spechler SJ, Souza RF (2005) Acid increases MAPK mediated proliferation in Barrett’s esophageal adenocarcinoma cells via intracellular acidification through a Cl-/HCO3- exchanger. Am J Physiol Gastrointest Liver Physiol 289:G991–G997PubMedCrossRefGoogle Scholar
  38. 38.
    Ryder C, McColl K, Zhong F, Distelhorst CW (2012) Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. J Biol Chem 287:27863–27875PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lamonte G, Tang X, Chen JL, Wu J, Ding CK, Keenan MM, Sangokoya C, Kung HN, Ilkayeva O, Boros LG, Newgard CB, Chi JT (2013) Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab 1:23PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Corbet C, Pinto A, Martherus R, Santiago de Jesus JP, Polet F, Feron O (2016) Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab 24:311–323PubMedCrossRefGoogle Scholar
  41. 41.
    Burd R, Wachsberger PR, Biaglow JE, Wahl ML, Lee I, Leeper DB (2001) Absence of Crabtree effect in human melanoma cells adapted to growth at low pH: reversal by respiratory inhibitors. Cancer Res 61:5630–5635PubMedGoogle Scholar
  42. 42.
    Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O’Dwyer KM, Liesveld JL, Brookes PS, Becker MW, Jordan CT (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12:329–341PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, Huang CH, Kao SY, Tzeng CH, Tai SK, Chang SY, Lee OK, Wu KJ (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12:982–992PubMedCrossRefGoogle Scholar
  45. 45.
    Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD et al (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18:829–840PubMedCrossRefGoogle Scholar
  46. 46.
    Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES, Howell A, Pestell RG, Sotgia F, Lisanti MP (2011) Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle 10:1271–1286PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507–7511PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Petrachi T, Romagnani A, Albini A, Longo C, Argenziano G, Grisendi G, Dominici M, Ciarrocchi A, Dallaglio K (2016) Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. Oncotarget. [Epub ahead of print] PubMed PMID:28036292.Google Scholar
  49. 49.
    Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40PubMedCrossRefGoogle Scholar
  50. 50.
    Gong C, Bauvy C, Tonelli G, Yue W, Deloménie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32(2261–72):1–11PubMedGoogle Scholar
  51. 51.
    Rausch V, Liu L, Apel A, Rettig T, Gladkich J, Labsch S, Kallifatidis G, Kaczorowski A, Groth A, Gross W et al (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 227:325–335PubMedCrossRefGoogle Scholar
  52. 52.
    Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C (2009) The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125:717–722PubMedCrossRefGoogle Scholar
  54. 54.
    Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wojtkowiak JW, Rothberg JM, Kumar V, Schramm KJ, Haller E, Proemsey JB et al (2012) Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res 72:3938–3947PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Pellegrini P, Strambi A, Zipoli C, Hägg-Olofsson M, Buoncervello M, Linder S, De Milito A (2014) Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 10:562–571PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Goretzki L, Schmitt M, Mann K, Calvete J, Chucholowski N, Kramer M et al (1992) Effective activation of the proenzyme form of the urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L. FEBS Lett 297:112–118PubMedCrossRefGoogle Scholar
  58. 58.
    Mignatti P, Rifkin DB (1996) Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 49:117–137PubMedGoogle Scholar
  59. 59.
    Lyons RM, Keski-Oja J, Moses HL (1988) Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol 106:1659–1665PubMedCrossRefGoogle Scholar
  60. 60.
    Ellis V, Pyke C, Eriksen J, Solberg H, Danø K (1992) The urokinase receptor: involvement in cell surface proteolysis and cancer invasion. Ann N Y Acad Sci 667:13–31PubMedCrossRefGoogle Scholar
  61. 61.
    Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11:23–36PubMedCrossRefGoogle Scholar
  62. 62.
    Eden G, Archinti M, Furlan F, Murphy R, Degryse B (2011) The urokinase receptor interactome. Curr Pharm Des 17:1874–1889PubMedCrossRefGoogle Scholar
  63. 63.
    Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1:445–457PubMedCrossRefGoogle Scholar
  64. 64.
    Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63:1684–1695PubMedGoogle Scholar
  65. 65.
    Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494PubMedCrossRefGoogle Scholar
  66. 66.
    Vihinen P, Kähäri VM (2002) Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 99:157–166PubMedCrossRefGoogle Scholar
  67. 67.
    Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R et al (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17:177–181PubMedCrossRefGoogle Scholar
  68. 68.
    Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051PubMedGoogle Scholar
  69. 69.
    Kato Y, Nakayama Y, Umeda M, Miyazaki K (1992) Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. J Biol Chem 267:11424–11430PubMedGoogle Scholar
  70. 70.
    Toyoshima M, Nakajima M (1999) Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 274:24153–24160PubMedCrossRefGoogle Scholar
  71. 71.
    Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M, Gatenby RA, Gillies RJ (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25:411–425PubMedCrossRefGoogle Scholar
  72. 72.
    Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H + exchange. J Physiol 567:225–238PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Paradise RK, Lauffenburger DA, Van Vliet KJ (2011) Acidic extracellular pH promotes activation of integrin α(v)β(3). PLoS One 6:e15746PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Elias AP, Dias S (2008) Microenvironment changes (in pH) affect VEGF alternative splicing. Cancer Microenviron 1:131–139PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Shi Q, Le X, Wang B, Abbruzzese JL, Xiong Q, He Y et al (2001) Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene 20:3751–3756PubMedCrossRefGoogle Scholar
  76. 76.
    Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020–6024PubMedGoogle Scholar
  77. 77.
    Xu L, Fidler IJ (2000) Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. Cancer Res 60:4610–4616PubMedGoogle Scholar
  78. 78.
    Scott PA, Gleadle JM, Bicknell R, Harris AL (1998) Role of the hypoxia sensing system, acidity and reproductive hormones in the variability of vascular endothelial growth factor induction in human breast carcinoma cell lines. Int J Cancer 75:706–712PubMedCrossRefGoogle Scholar
  79. 79.
    Parks SK, Mazure NM, Counillon L, Pouysségur J (2013) Hypoxia promotes tumor cell survival in acidic conditions by preserving ATP levels. J Cell Physiol 228:1854–1862PubMedCrossRefGoogle Scholar
  80. 80.
    Peppicelli S, Bianchini F, Contena C, Tombaccini D, Calorini L (2013) Acidic pH via NF-κB favours VEGF-C expression in human melanoma cells. Clin Exp Metastasis 30:957–967PubMedCrossRefGoogle Scholar
  81. 81.
    Su JL, Yang PC, Shih JY, Yang CY, Wei LH, Hsieh CY et al (2006) The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 9:209–223PubMedCrossRefGoogle Scholar
  82. 82.
    Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69:522–530PubMedGoogle Scholar
  83. 83.
    Choi SY, Collins CC, Gout PW, Wang Y (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol 230:350–355PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al (2007) Inhibitory effect of tumor cell derived lactic acid on human T cells. Blood 109:2812–2819CrossRefGoogle Scholar
  85. 85.
    Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-KlieserW, Hoves S, Andreesen R et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–2021PubMedCrossRefGoogle Scholar
  86. 86.
    Masson D, Peters PJ, Geuze HJ, Borst J, Tschopp J (1990) Interaction of chondroitin sulfate with perforin and granzymes of cytolytic T-cells is dependent on pH. BioChemistry 29:11229–11235PubMedCrossRefGoogle Scholar
  87. 87.
    Severin T, Müller B, Giese G, Uhl B, Wolf B, Hauschildt S, Kreutz W (1994) pH-dependent LAK cell cytotoxicity. Tumour Biol 15:304–310PubMedCrossRefGoogle Scholar
  88. 88.
    Liao YP, Schaue D, McBride WH (2007) Modification of the tumor microenvironment to enhance immunity. Front Biosci 12:3576–3600PubMedCrossRefGoogle Scholar
  89. 89.
    Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, Huber V, Parmiani G, Generoso L, Santinami M, Borghi M, Fais S, Bellone M, Rivoltini L (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–2756PubMedCrossRefGoogle Scholar
  90. 90.
    Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E (2012) Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 131:633–640PubMedCrossRefGoogle Scholar
  91. 91.
    Ohashi T, Akazawa T, Aoki M, Kuze B, Mizuta K, Ito Y, Inoue N (2013) Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int J Cancer 133:1107–1118PubMedCrossRefGoogle Scholar
  92. 92.
    Fernandez SF, Fung C, Helinski JD, Alluri R, Davidson BA, Knight PR 3rd (2013) Low pH environmental stress inhibits LPS and LTA-stimulated proinflammatory cytokine production in rat alveolar macrophages. Biomed Res Int 2013:742184PubMedPubMedCentralGoogle Scholar
  93. 93.
    Bellone M, Calcinotto A, Filipazzi P, De Milito A, Fais S, Rivoltini L (2013) The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncoimmunology 2:e22058PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Vishvakarma NK, Singh SM (2010) Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: Implication in antitumor activation of tumor-associated macrophages. Immunol Lett 134:83–92PubMedCrossRefGoogle Scholar
  95. 95.
    Vishvakarma NK, Singh SM (2011) Augmentation of myelopoiesis in a murine host bearing a T cell lymphoma following in vivo administration of proton pump inhibitor pantoprazole. Biochimie 93:1786–1796PubMedCrossRefGoogle Scholar
  96. 96.
    Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, Damaghi M, Wojtkowiak JW, Mulé JJ, Ibrahim-Hashim A, Gillies RJ (2016) Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer Res 76:1381–1390PubMedCrossRefGoogle Scholar
  97. 97.
    Raghunand N, Gillies RJ (2000) pH and drug resistance in tumors. Drug Resist Updat 3:39–47PubMedCrossRefGoogle Scholar
  98. 98.
    Liu FS (2009) Mechanisms of chemotherapeutic drug resistance in cancer therapy—a quick review. Taiwan J Obstet Gynecol 48:239–244PubMedCrossRefGoogle Scholar
  99. 99.
    Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics: I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66:1207–1218PubMedCrossRefGoogle Scholar
  100. 100.
    Daniel C, Bell C, Burton C, Harguindey S, Reshkin SJ, Rauch C (2013) The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochim Biophys Acta 1832:606–617PubMedCrossRefGoogle Scholar
  101. 101.
    Gerweck LE, Vijayappa S, Kozin S (2006) Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 5:1275–1279PubMedCrossRefGoogle Scholar
  102. 102.
    Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. II. pHdependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol T 66:1219–1229CrossRefGoogle Scholar
  103. 103.
    Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384PubMedGoogle Scholar
  104. 104.
    Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor CW et al (1999) Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer 80:1005–1011PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ (2011) Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm 8:2032–2038PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    De Milito A, Fais S (2005) Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol 1:779–786PubMedCrossRefGoogle Scholar
  107. 107.
    Thews O, Gassner B, Kelleher DK, Schwerdt G, Gekle M (2006) Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia 8:143–152PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Sauvant C, Nowak M, Wirth C, Schneider B, Riemann A, Gekle M, Thews O (2008) Acidosis induces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p-glycoprotein via activation of p38. Int J Cancer 123:2532–2542PubMedCrossRefGoogle Scholar
  109. 109.
    Williams AC, Collard TJ, Paraskeva C (1999) An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene 18:3199–3204. doi: 10.1038/sj.onc.1202660 PubMedCrossRefGoogle Scholar
  110. 110.
    Wachsberger PR, Landry J, Storck C et al (1997) Mammalian cells adapted to growth at pH 6.7 have elevated HSP27 levels and are resistant to cisplatin. Int J Hyperthermia 13:251–255PubMedCrossRefGoogle Scholar
  111. 111.
    Ohtsubo T, Igawa H, Saito T, Matsumoto H, Park HJ, Song CW, Kano E, Saito H (2001) Acidic environment modifies heat- or radiation-induced apoptosis in human maxillary cancer cells. Int J Radiat Oncol Biol Phys 49:1391–1398PubMedCrossRefGoogle Scholar
  112. 112.
    Ohtsubo T, Wang X, Takahashi A, Ohnishi K, Saito H, Song CW et al (1997) p53-dependent induction of WAF1 by a low-pH culture condition in human glioblastoma cells. Cancer Res 57:3910–3913PubMedGoogle Scholar
  113. 113.
    Lee HS, Park HJ, Lyons JC, Griffin RJ, Auger EA, Song CW (1997) Radiation-induced apoptosis in different pH environments in vitro. Int J Radiat Oncol Biol Phys 38:1079–1087PubMedCrossRefGoogle Scholar
  114. 114.
    Choi EK, Roberts KP, Griffin RJ, Han T, Park HJ, Song CW et al (2004) Effect of pH on radiation-induced p53 expression. Int J Radiat Oncol Biol Phys 60:1264–1271PubMedCrossRefGoogle Scholar
  115. 115.
    Park HJ, Lee SH, Chung H, Rhee YH, Lim BU, Ha SW et al (2003) Influence of environmental pH on G2-phase arrest caused by ionizing radiation. Radiat Res 159:86–93PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Silvia Peppicelli
    • 1
    • 2
  • Elena Andreucci
    • 1
    • 2
  • Jessica Ruzzolini
    • 1
    • 2
  • Anna Laurenzana
    • 1
    • 2
  • Francesca Margheri
    • 1
    • 2
  • Gabriella Fibbi
    • 1
    • 2
  • Mario Del Rosso
    • 1
    • 2
  • Francesca Bianchini
    • 1
    • 2
  • Lido Calorini
    • 1
    • 2
  1. 1.Dipartimento di Scienze Biomediche Sperimentali e Cliniche “Mario Serio”Università di FirenzeFirenzeItaly
  2. 2.Istituto Toscano TumoriFirenzeItaly

Personalised recommendations