Cellular and Molecular Life Sciences

, Volume 74, Issue 15, pp 2735–2747 | Cite as

Epigenetics: a link between addiction and social environment

  • Duyilemi C. Ajonijebu
  • Oualid Abboussi
  • Vivienne A. Russell
  • Musa V. Mabandla
  • William M. U. Daniels
Review

Abstract

The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.

Keywords

Cocaine and alcohol abuse DNA methylation Chromatin remodeling Epigenomic programming and inheritance Environmental stimuli Social stress 

Notes

Acknowledgements

We wish to express our appreciation to the College of Health Sciences (CHS) of University of KwaZulu-Natal for granting a PhD Scholarship to D.C Ajonijebu and a postdoctoral fellowship to O. Abboussi. The authors also wish to acknowledge the National Research Foundation (NRF) of South Africa who supports the research of MV Mabandla and WMU Daniels.

Compliance with ethical standards

Conflict of interest

All authors have no conflict of interest to disclose.

References

  1. 1.
    Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489PubMedCrossRefGoogle Scholar
  2. 2.
    Lieb R (2015) Epidemiological perspectives on comorbidity between substance use disorders and other mental disorders. In: Dom G, Moggi F (eds) Co-occurring Addictive and Psychiatric Disorders. Springer, Heidelberg, pp 3–12Google Scholar
  3. 3.
    Nelson PK et al (2011) Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: results of systematic reviews. Lancet 378(9791):571–583PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Compton WM et al (2005) Developments in the epidemiology of drug use and drug use disorders. Am J Psychiatry 162(8):1494–1502PubMedCrossRefGoogle Scholar
  5. 5.
    Renthal W, Nestler EJ (2008) Epigenetic mechanisms in drug addiction. Trends Mol Med 14(8):341–350PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Graham DL et al (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10(8):1029–1037PubMedCrossRefGoogle Scholar
  7. 7.
    Lu L et al (2004) A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 24(7):1604–1611PubMedCrossRefGoogle Scholar
  8. 8.
    Ting-A-Kee R et al (2013) Infusion of brain-derived neurotrophic factor into the ventral tegmental area switches the substrates mediating ethanol motivation. Eur J Neurosci 37(6):996–1003PubMedCrossRefGoogle Scholar
  9. 9.
    Bowers MS et al (2004) Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 42(2):269–281PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kelz MB et al (1999) Expression of the transcription factor ∆FosB in the brain controls sensitivity to cocaine. Nature 401(6750):272–276PubMedCrossRefGoogle Scholar
  11. 11.
    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254PubMedCrossRefGoogle Scholar
  12. 12.
    Weaver IC et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854PubMedCrossRefGoogle Scholar
  13. 13.
    Abifadel M et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156PubMedCrossRefGoogle Scholar
  14. 14.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080PubMedCrossRefGoogle Scholar
  15. 15.
    Renthal W, Nestler EJ (2009) Chromatin regulation in drug addiction and depression. Dialog Clin Neurosci 11(3):257Google Scholar
  16. 16.
    Houri-Zeevi L, Rechavi O (2017) A matter of time: small RNAs regulate the duration of epigenetic inheritance. Trends Genet 33(1):46–57PubMedCrossRefGoogle Scholar
  17. 17.
    Starkman BG, Sakharkar AJ, Pandey SC (2011) Epigenetics—beyond the genome in alcoholism. Alcohol Res-Curr Rev 34(3):293Google Scholar
  18. 18.
    Nestler EJ (2014) Epigenetic mechanisms of drug addiction. Neuropharmacology 76:259–268PubMedCrossRefGoogle Scholar
  19. 19.
    Im H-I et al (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13(9):1120–1127PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    He D-Y, Neasta J, Ron D (2010) Epigenetic regulation of BDNF expression via the scaffolding protein RACK1. J Biol Chem 285(25):19043–19050PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Moonat S et al (2011) The role of amygdaloid brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein and dendritic spines in anxiety and alcoholism. Addict Biol 16(2):238–250PubMedCrossRefGoogle Scholar
  22. 22.
    Antequera F (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci CMLS 60(8)1647–1658PubMedCrossRefGoogle Scholar
  23. 23.
    Maunakea AK et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Feng J, Fan G (2009) The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 89:67–84PubMedCrossRefGoogle Scholar
  25. 25.
    Dong E et al (2007) Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics 2(1):29–36PubMedCrossRefGoogle Scholar
  26. 26.
    Costa E, Grayson DR, Guidotti A (2003) Epigenetic downregulation of GABAergic function in schizophrenia: potential for pharmacological intervention? Mol Interv 3(4):220PubMedCrossRefGoogle Scholar
  27. 27.
    Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38PubMedCrossRefGoogle Scholar
  28. 28.
    LaPlant Q et al (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13(9):1137–1143PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lagali P, Corcoran C, Picketts D (2010) Hippocampus development and function: role of epigenetic factors and implications for cognitive disease. Clin Genet 78(4):321–333PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang Y et al (2008) Epigenetics in the nervous system. J Neurosci 28(46):11753–11759PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Grayson DR, Kundakovic M, Sharma RP (2010) Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol 77(2):126–135PubMedCrossRefGoogle Scholar
  32. 32.
    Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96(1):103–114PubMedCrossRefGoogle Scholar
  33. 33.
    Fattore L, Melis M (2016) Sex differences in impulsive and compulsive behaviors: a focus on drug addiction. Addict Biol 21(5):1043–1051PubMedCrossRefGoogle Scholar
  34. 34.
    Chavkin C, Koob GF (2016) Dynorphin, Dysphoria, and Dependence: the Stress of Addiction. Neuropsychopharmacology 41(1):373–374PubMedCrossRefGoogle Scholar
  35. 35.
    Ahmed S (2012) The science of making drug-addicted animals. Neuroscience 211:107–125PubMedCrossRefGoogle Scholar
  36. 36.
    Sinha R (2008) Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci 1141(1):105–130PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Deminière JM et al (1992) Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Res 586(1):135–139PubMedCrossRefGoogle Scholar
  38. 38.
    Isengulova A, Kalmykova Z, Miroshnichenko I (2009) The significance of maternal care for the formation of ethanol preference in rats periodically separated from mothers during the first half of the nest period. Bull Exp Biol Med 147(4):390–393PubMedCrossRefGoogle Scholar
  39. 39.
    Francis D, Kuhar M (2008) Frequency of maternal licking and grooming correlates negatively with vulnerability to cocaine and alcohol use in rats. Pharmacology Biochemistry Behavior 90(3):497–500CrossRefGoogle Scholar
  40. 40.
    Yap JJ, Miczek KA (2007) Social defeat stress, sensitization, and intravenous cocaine self-administration in mice. Psychopharmacology (Berl) 192(2):261–273CrossRefGoogle Scholar
  41. 41.
    Burke AR, Miczek KA (2015) Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: role of social experience and adaptive coping behavior. Psychopharmacology (Berl) 232(16):3067–3079CrossRefGoogle Scholar
  42. 42.
    Rodríguez-Arias M et al (2017) Effects of repeated social defeat on adolescent mice on cocaine-induced CPP and self-administration in adulthood: integrity of the blood–brain barrier. Addict Biol  22:129–141CrossRefGoogle Scholar
  43. 43.
    Montagud-Romero S et al (2016) Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry 70:39–48PubMedCrossRefGoogle Scholar
  44. 44.
    Lewis CR et al (2016) Interactions between Early Life Stress, Nucleus Accumbens MeCP2 Expression, and Methamphetamine Self-Administration in Male Rats. Neuropsychopharmacology 41(12):2851–2861PubMedCrossRefGoogle Scholar
  45. 45.
    Lewis CR et al (2013) The Effects of Maternal Separation on Adult Methamphetamine Self-Administration, Extinction, Reinstatement, and MeCP2 Immunoreactivity in the Nucleus Accumbens. Front Psychiatry 4:55PubMedPubMedCentralGoogle Scholar
  46. 46.
    Tesone-Coelho C et al (2015) Vulnerability to opiate intake in maternally deprived rats: implication of MeCP2 and of histone acetylation. Addict Biol 20(1):120–131PubMedCrossRefGoogle Scholar
  47. 47.
    Champagne FA, Curley JP (2009) Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience Biobehavioral Reviews 33(4):593–600PubMedCrossRefGoogle Scholar
  48. 48.
    McGowan PO et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Feinberg AP, Fallin MD (2015) Epigenetics at the crossroads of genes and the environment. Jama 314(11):1129–1130PubMedCrossRefGoogle Scholar
  50. 50.
    Lewis CR, Olive MF (2014) Early life stress interactions with the epigenome: potential mechanisms driving vulnerability towards psychiatric illness. Behav Pharmacol 25(5 0 6):341PubMedPubMedCentralGoogle Scholar
  51. 51.
    Schwarz JM, Hutchinson MR, Bilbo SD (2011) Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. The Journal of Neuroscience 31(49):17835–17847PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Li X et al (2015) Environmental enrichment blocks reinstatement of ethanol-induced conditioned place preference in mice. Neurosci Lett 599:92–96PubMedCrossRefGoogle Scholar
  53. 53.
    Chauvet C et al (2009) Environmental enrichment reduces cocaine seeking and reinstatement induced by cues and stress but not by cocaine. Neuropsychopharmacology 34(13):2767–2778PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Thiel KJ et al (2009) Anti-craving effects of environmental enrichment. Int J Neuropsychopharmacolog 12(9):1151–1156CrossRefGoogle Scholar
  55. 55.
    Zhang Y et al (2014) Overexpression of DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the protective depression phenotype of environmental enrichment. Front Behav Neurosci 8:297PubMedPubMedCentralGoogle Scholar
  56. 56.
    Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7(5):395–401PubMedCrossRefGoogle Scholar
  57. 57.
    Renthal W et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3):517–529PubMedCrossRefGoogle Scholar
  58. 58.
    Maruska KP, Fernald RD (2011) Social regulation of gene expression in the hypothalamic-pituitary-gonadal axis. Physiology 26(6):412–423PubMedCrossRefGoogle Scholar
  59. 59.
    Champagne FA (2010) Epigenetic influence of social experiences across the lifespan. Dev Psychobiol 52(4):299–311PubMedCrossRefGoogle Scholar
  60. 60.
    Champagne FA, Meaney MJ (2007) Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behav Neurosci 121(6):1353PubMedCrossRefGoogle Scholar
  61. 61.
    Borghol N et al (2012) Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol 41(1):62–74PubMedCrossRefGoogle Scholar
  62. 62.
    McGuinness D et al (2012) Socio-economic status is associated with epigenetic differences in the pSoBid cohort. Int J Epidemiol 41:151–160PubMedCrossRefGoogle Scholar
  63. 63.
    Ponomarev I et al (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 32(5):1884–1897PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kaminen-Ahola N et al (2010) Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6(1):e1000811PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ouko LA et al (2009) Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in male gametes—implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res 33(9):1615–1627PubMedCrossRefGoogle Scholar
  66. 66.
    Bohacek J, Mansuy IM (2013) Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 38(1):220–236PubMedCrossRefGoogle Scholar
  67. 67.
    Haycock PC (2009) Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod 81(4):607–617PubMedCrossRefGoogle Scholar
  68. 68.
    Pascual M et al (2012) Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats correlate with ethanol-induced place conditioning. Alcohol Clin Exp Res 36:84Google Scholar
  69. 69.
    Pascual M et al (2012) Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology 62(7):2309–2319PubMedCrossRefGoogle Scholar
  70. 70.
    Liu Y et al (2009) Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics 4(7):500–511PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Anier K et al (2010) DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 35(12):2450–2461PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Sadri-Vakili G et al (2010) Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. J Neurosci 30(35):11735–11744PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metabol 21(4):214–222CrossRefGoogle Scholar
  74. 74.
    Wang L et al (2010) Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIα in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35(4):913–928PubMedCrossRefGoogle Scholar
  75. 75.
    Maze I et al (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327(5962):213–216PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Vassoler FM et al (2013) Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci 16(1):42–47PubMedCrossRefGoogle Scholar
  77. 77.
    Novikova SI et al (2008) Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring. PLoS One 3(4):e1919–e1919PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Meyer K, Zhang H, Zhang L (2009) Direct effect of cocaine on epigenetic regulation of PKCɛ gene repression in the fetal rat heart. J Mol Cell Cardiol 47(4):504–511PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Caprioli D et al (2007) Modeling the role of environment in addiction. Prog Neuropsychopharmacol Biol Psychiatry 31(8):1639–1653PubMedCrossRefGoogle Scholar
  80. 80.
    Araujo NP et al (2005) The importance of housing conditions on behavioral sensitization and tolerance to ethanol. Pharmacol Biochem Behav 82(1):40–45PubMedCrossRefGoogle Scholar
  81. 81.
    Matsuda T et al (2001) Functional alteration of brain dopaminergic system in isolated aggressive mice. Nihon shinkei seishin yakurigaku zasshi = Jpn J Psychopharmacol 21(3):71–76Google Scholar
  82. 82.
    D’Arbe M, Einstein R, Lavidis N (2002) Stressful animal housing conditions and their potential effect on sympathetic neurotransmission in mice. Am J Physiol-Regul Integr Comp Physiol 282(5):R1422–R1428PubMedCrossRefGoogle Scholar
  83. 83.
    McCormick CM et al (2005) Long-lasting, sex-and age-specific effects of social stressors on corticosterone responses to restraint and on locomotor responses to psychostimulants in rats. Horm Behav 48(1):64–74PubMedCrossRefGoogle Scholar
  84. 84.
    McCormick CM et al (2010) Hippocampal cell proliferation and spatial memory performance after social instability stress in adolescence in female rats. Behav Brain Res 208(1):23–29PubMedCrossRefGoogle Scholar
  85. 85.
    Shahbazi M et al (2008) Age-and sex-dependent amphetamine self-administration in rats. Psychopharmacology (Berl) 196(1):71–81CrossRefGoogle Scholar
  86. 86.
    Lin, E.-J.D. et al (2011) Environmental enrichment exerts sex-specific effects on emotionality in C57BL/6 J mice. Behav Brain Res 216(1):349–357PubMedCrossRefGoogle Scholar
  87. 87.
    Sterlemann V et al (2008) Long-term behavioral and neuroendocrine alterations following chronic social stress in mice: implications for stress-related disorders. Horm Behav 53(2):386–394PubMedCrossRefGoogle Scholar
  88. 88.
    McHugh RK, Hearon BA, Otto MW (2010) Cognitive behavioral therapy for substance use disorders. Psychiatr Clin North Am 33(3):511–525PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Krupnick J (2009) Computer-assisted delivery of cognitive-behavioral therapy for addiction. Year Book of Psychiatry and Applied Mental Health, 72–73Google Scholar
  90. 90.
    Anton RF et al (2006) Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial. Jama 295(17):2003–2017PubMedCrossRefGoogle Scholar
  91. 91.
    Carroll KM (2003) Integrating psychotherapy and pharmacotherapy in substance abuse treatment. In: Rotgers F, Morgenstern, J, Walters ST (eds) Treating Substance Abuse: Theory and Technique. Guilford Press, New York, pp 314–342Google Scholar
  92. 92.
    Volkow ND, Skolnick P (2012) New medications for substance use disorders: challenges and opportunities. Neuropsychopharmacology 37(1):290–292PubMedCrossRefGoogle Scholar
  93. 93.
    Shorter D, Kosten TR (2011) Novel pharmacotherapeutic treatments for cocaine addiction. BMC Med 9(1):119PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zheng F, Zhan C-G (2009) Recent progress in protein drug design and discovery with a focus on novel approaches to the development of anticocaine medications. Future Med Chem 1(3):515–528PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zheng F, Zhan C-G (2011) Enzyme-therapy approaches for the treatment of drug overdose and addiction. Future Med Chem 3(1):9–13PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kinsey BM, Jackson DC, Orson FM (2009) Anti-drug vaccines to treat substance abuse. Immunol Cell Biol 87(4):309–314PubMedCrossRefGoogle Scholar
  97. 97.
    Zhan C-G (2009) Novel pharmacological approaches to treatment of drug overdose and addiction. Expert Rev Clin Pharmacol 2(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Collins GT et al (2009) Cocaine esterase prevents cocaine-induced toxicity and the ongoing intravenous self-administration of cocaine in rats. J Pharmacol Exp Ther 331(2):445–455PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Brim RL et al (2010) A thermally stable form of bacterial cocaine esterase: a potential therapeutic agent for treatment of cocaine abuse. Mol Pharmacol 77(4):593–600PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Montoya ID (2015) Biologics (vaccines, antibodies, enzymes) to treat drug addictions. In: Nady elGuebaly GC, Galanter M (eds) Textbook of Addiction Treatment: International Perspectives. Springer, New York, pp 683–692Google Scholar
  101. 101.
    Bonoiu AC et al (2009) Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci 106(14):5546–5550PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Fischer A et al (2010) Targeting the correct HDAC (s) to treat cognitive disorders. Trends Pharmacol Sci 31(12):605–617PubMedCrossRefGoogle Scholar
  103. 103.
    Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discovery 7(10):854–868PubMedCrossRefGoogle Scholar
  104. 104.
    Cadet JL (2016) Epigenetics of stress, addiction, and resilience: therapeutic implications. Mol Neurobiol 53(1):545–560PubMedCrossRefGoogle Scholar
  105. 105.
    Malvaez M et al (2011) CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J Neurosci 31(47):16941–16948PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Madsen HB et al (2012) CREB1 and CREB-binding protein in striatal medium spiny neurons regulate behavioural responses to psychostimulants. Psychopharmacology (Berl) 219(3):699–713CrossRefGoogle Scholar
  107. 107.
    Tsankova NM et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525PubMedCrossRefGoogle Scholar
  108. 108.
    Levenson JM et al (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279(39):40545–40559PubMedCrossRefGoogle Scholar
  109. 109.
    Renthal W, Nestler EJ (2009) Histone acetylation in drug addiction. In Seminars in cell & developmental biology. Academic Press 20(4):387–394Google Scholar
  110. 110.
    Lewis CR, Olive MF (2013) Epigenetic modifications as novel targets for drug addiction. Front CNS Drug Discov 17:26–42CrossRefGoogle Scholar
  111. 111.
    Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1(4) 287–299PubMedCrossRefGoogle Scholar
  112. 112.
    Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51PubMedCrossRefGoogle Scholar
  113. 113.
    McQuown SC, Wood MA (2010) Epigenetic regulation in substance use disorders. Curr Psychiatry Rep 12(2):145–153PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Vecsey CG et al (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci 27(23):6128–6140PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Stefanko DP et al (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci 106(23):9447–9452PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Malvaez M et al (2010) Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry 67(1):36–43PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Sun J et al (2008) The effects of sodium butyrate, an inhibitor of histone deacetylase, on the cocaine-and sucrose-maintained self-administration in rats. Neurosci Lett 441(1):72–76PubMedCrossRefGoogle Scholar
  118. 118.
    Romieu P et al (2008) Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 28(38):9342–9348PubMedCrossRefGoogle Scholar
  119. 119.
    D’Addario C et al (2013) Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex. J Mol Neurosci 49(2):312–319PubMedCrossRefGoogle Scholar
  120. 120.
    Arora DS et al (2013) Hyposensitivity to gamma-aminobutyric acid in the ventral tegmental area during alcohol withdrawal: reversal by histone deacetylase inhibitors. Neuropsychopharmacology 38(9):1674–1684PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Botia B et al (2012) Expression of ethanol-induced behavioral sensitization is associated with alteration of chromatin remodeling in mice. ​PloS one 7(10):e47527PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kumar A et al (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48(2):303–314PubMedCrossRefGoogle Scholar
  123. 123.
    Wang L et al (2009) Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKII[alpha] in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35(4):913–928PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Schmidt HD et al (2012) Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters. J Neurochem 120(2):202–209PubMedCrossRefGoogle Scholar
  125. 125.
    Kennedy PJ et al (2013) Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 16(4):434–440PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Montoya ID, Vocci F (2008) Novel medications to treat addictive disorders. Curr Psychiatry Rep 10(5):392–398PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Jorenby DE et al (1999) A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. N Engl J Med 340(9):685–691PubMedCrossRefGoogle Scholar
  128. 128.
    Johnson BA et al (2003) Dose-ranging kinetics and behavioral pharmacology of naltrexone and acamprosate, both alone and combined, in alcohol-dependent subjects. J Clin Psychopharmacol 23(3):281–293PubMedGoogle Scholar
  129. 129.
    Substance Abuse and Mental Health Services Administration (SAMHSA) (2009) Incorporating alcohol pharmacotherapies into medical practice. Treatment improvement protocol (TIP) series 49. HHS publication no. (SMA) 12–4380  Google Scholar
  130. 130.
    Johnson BA (2008) Update on neuropharmacological treatments for alcoholism: Scientific basis and clinical findings. Biochem Pharmacol 75(1):34–56PubMedCrossRefGoogle Scholar
  131. 131.
    Fishman MJ et al (2010) Treatment of opioid dependence in adolescents and young adults with extended release naltrexone: preliminary case-series and feasibility. Addiction 105(9):1669–1676PubMedCrossRefGoogle Scholar
  132. 132.
    Marsch LA et al (2005) Predictors of outcome in LAAM, buprenorphine, and methadone treatment for opioid dependence. Exp Clin Psychopharmacol 13(4):293PubMedCrossRefGoogle Scholar
  133. 133.
    ​Leung CM (2003) Handbook of clinical alcoholism treatment. Hong Kong J Psychiatry 13(3):31–32Google Scholar
  134. 134.
    Heilig M, Egli M (2006) Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms. Pharmacol Ther 111(3):855–876PubMedCrossRefGoogle Scholar
  135. 135.
    Le Foll B, Goldberg SR (2005) Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J Pharmacol Exp Ther 312(3):875–883PubMedCrossRefGoogle Scholar
  136. 136.
    Karila L et al (2010) Pharmacological approaches to methamphetamine dependence: a focused review. Br J Clin Pharmacol 69(6):578–592PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Berk M et al (2013) The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 34(3):167–177PubMedCrossRefGoogle Scholar
  138. 138.
    Murray J, Lacoste J, Belin D (2012) N-Acetylcysteine as a treatment for addiction. In: Belin D (ed) Addictions: from pathophysiology to treatment. InTech, Rijeka, pp 335–380Google Scholar
  139. 139.
    O’Brien CP (2005) Anticraving medications for relapse prevention: a possible new class of psychoactive medications. Am J Psychiatry 162(8):1423–1431PubMedCrossRefGoogle Scholar
  140. 140.
    Leavitt S (2002) Evidence for the efficacy of naltrexone in the treatment of alcohol dependence (alcoholism). In: Addiction Treatment Forum: Naltrexone Clinical Update, pp 1–8Google Scholar
  141. 141.
    Sinha R et al (2007) Sex steroid hormones, stress response, and drug craving in cocaine-dependent women: implications for relapse susceptibility. Exp Clin Psychopharmacol 15(5):445PubMedCrossRefGoogle Scholar
  142. 142.
    Walsh SL et al (1996) Effects of naltrexone on response to intravenous cocaine, hydromorphone and their combination in humans. J Pharmacol Exp Ther 279(2):524–538PubMedGoogle Scholar
  143. 143.
    Health, U.D.o. and H. Services, Substance Abuse and Mental Health Services Administration (2014) National registry of evidence-based programs and practices (NREPP), 2013Google Scholar
  144. 144.
    Leshner AI (1997) Addiction is a brain disease, and it matters. Science 278(5335):45–47PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Duyilemi C. Ajonijebu
    • 1
  • Oualid Abboussi
    • 1
  • Vivienne A. Russell
    • 1
  • Musa V. Mabandla
    • 1
  • William M. U. Daniels
    • 1
    • 2
  1. 1.Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.School of PhysiologyUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations