Cellular and Molecular Life Sciences

, Volume 74, Issue 15, pp 2709–2722 | Cite as

Mechanisms of collective cell movement lacking a leading or free front edge in vivo



Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell–cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.


Leading edge Membrane protrusion Guidance cue Cell intercalation Planer cell polarity Planer cell chirality 



We apologize to colleagues whose work could not be cited because of space limitations. We especially thank all the members of Kuranaga laboratory for valuable discussions. Studies by our group were supported in part by grants from the Takeda Science Foundation (E.K.), the Japan Foundation for Applied Enzymology (E.K.), MEXT KAKENHI Grant Number JP26114003 (E.K.) and the JSPS KAKENHI Grant Numbers JP24687027 (E.K.), and JP16H04800 (E.K.).


  1. 1.
    Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457. doi: 10.1038/nrm2720 PubMedCrossRefGoogle Scholar
  2. 2.
    Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17:97–109. doi: 10.1038/nrm.2015.14 PubMedCrossRefGoogle Scholar
  3. 3.
    Scarpa E, Mayor R (2016) Collective cell migration in development. J Cell Biol 212:143–155. doi: 10.1083/jcb.201508047 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ewald AJ, Brenot A, Duong M et al (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581. doi: 10.1016/j.devcel.2008.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sato K, Hiraiwa T, Maekawa E et al (2015) Left–right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis. Nat Commun 6:10074. doi: 10.1038/ncomms10074 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bilder D, Haigo SL (2012) Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. Dev Cell 22:12–23. doi: 10.1016/j.devcel.2011.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Harris TJC, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11:502–514. doi: 10.1038/nrm2927 PubMedCrossRefGoogle Scholar
  8. 8.
    Affolter M, Zeller R, Caussinus E (2009) Tissue remodelling through branching morphogenesis. Nat Rev Mol Cell Biol 10:831–842. doi: 10.1038/nrm2797 PubMedCrossRefGoogle Scholar
  9. 9.
    Lebreton G, Casanova J, Aman A et al (2014) Specification of leading and trailing cell features during collective migration in the Drosophila trachea. J Cell Sci 127:465–474. doi: 10.1242/jcs.142737 PubMedCrossRefGoogle Scholar
  10. 10.
    Ghabrial AS, Krasnow MA (2006) Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441:746–749. doi: 10.1038/nature04829 PubMedCrossRefGoogle Scholar
  11. 11.
    Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177. doi: 10.1083/jcb.200302047 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246. doi: 10.4161/org.4.4.7414 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Prasad M, Montell DJ (2007) Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev Cell 12:997–1005. doi: 10.1016/j.devcel.2007.03.021 PubMedCrossRefGoogle Scholar
  14. 14.
    McLennan R, Schumacher LJ, Morrison JA et al (2015) Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front. Development 142:2014–2025. doi: 10.1242/dev.117507 PubMedCrossRefGoogle Scholar
  15. 15.
    Theveneau E, Marchant L, Kuriyama S et al (2010) Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19:39–53. doi: 10.1016/j.devcel.2010.06.012 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Carmona-Fontaine C, Matthews HK, Kuriyama S et al (2008) Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456:957–961. doi: 10.1038/nature07441 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Haas P, Gilmour D (2006) Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 10:673–680. doi: 10.1016/j.devcel.2006.02.019 PubMedCrossRefGoogle Scholar
  18. 18.
    Sutherland D, Samakovlis C, Krasnow MA (1996) Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091–1101. doi: 10.1016/S0092-8674(00)81803-6 PubMedCrossRefGoogle Scholar
  19. 19.
    Klämbt C, Glazer L, Shilo BZ (1992) Breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev 6:1668–1678. doi: 10.1101/GAD.6.9.1668 PubMedCrossRefGoogle Scholar
  20. 20.
    Ruhrberg C, Gerhardt H, Golding M et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698. doi: 10.1101/gad.242002 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Duchek P, Rørth P (2001) Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291:131–133. doi: 10.1126/science.291.5501.131 PubMedCrossRefGoogle Scholar
  22. 22.
    Duchek P, Somogyi K, Jékely G et al (2001) Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107:17–26. doi: 10.1016/S0092-8674(01)00502-5 PubMedCrossRefGoogle Scholar
  23. 23.
    Belmadani A, Tran PB, Ren D et al (2005) The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J Neurosci 25:3995–4003. doi: 10.1523/JNEUROSCI.4631-04.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chihara T, Kato K, Taniguchi M et al (2003) Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Development 130:1419–1428. doi: 10.1242/dev.00361 PubMedCrossRefGoogle Scholar
  25. 25.
    Tan W, Palmby TR, Gavard J et al (2008) An essential role for Rac1 in endothelial cell function and vascular development. FASEB J 22:1829–1838. doi: 10.1096/fj.07-096438 PubMedCrossRefGoogle Scholar
  26. 26.
    Abraham S, Scarcia M, Bagshaw RD et al (2015) A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis. Nat Commun 6:7286. doi: 10.1038/ncomms8286 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Murphy AM, Montell DJ (1996) Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J Cell Biol 133:617–630. doi: 10.1083/JCB.133.3.617 PubMedCrossRefGoogle Scholar
  28. 28.
    Ridley AJ, Schwartz MA, Burridge K et al (2003) Cell migration: Integrating signals from front to back. Science 302:1704–1710. doi: 10.1126/science.1092053 PubMedCrossRefGoogle Scholar
  29. 29.
    Alfandari D, Cousin H, Gaultier A et al (2003) Integrin α5β1 supports the migration of Xenopus cranial neural crest on fibronectin. Dev Biol 260:449–464. doi: 10.1016/S0012-1606(03)00277-X PubMedCrossRefGoogle Scholar
  30. 30.
    Bjerke MA, Dzamba BJ, Wang C, DeSimone DW (2014) FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm. Dev Biol 394:340–356. doi: 10.1016/j.ydbio.2014.07.023 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Davidson LA, Hoffstrom BG, Keller R, DeSimone DW (2002) Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin α5β1, fibronectin, and tissue geometry. Dev Biol 242:109–129. doi: 10.1006/dbio.2002.0537 PubMedCrossRefGoogle Scholar
  32. 32.
    Montero J-A, Carvalho L, Wilsch-Bräuninger M et al (2005) Shield formation at the onset of zebrafish gastrulation. Development 132:1187–1198. doi: 10.1242/dev.01667 PubMedCrossRefGoogle Scholar
  33. 33.
    Cai D, Chen S-C, Prasad M et al (2014) Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159. doi: 10.1016/j.cell.2014.03.045 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cela C, Llimargas M (2006) Egfr is essential for maintaining epithelial integrity during tracheal remodelling in Drosophila. Development 133:3115–3125. doi: 10.1242/dev.02482 PubMedCrossRefGoogle Scholar
  35. 35.
    David NB, Sapède D, Saint-Etienne L et al (2002) Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci USA 99:16297–16302. doi: 10.1073/pnas.252339399 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ghysen A, Dambly-Chaudière C (2007) The lateral line microcosmos. Genes Dev 21:2118–2130. doi: 10.1101/gad.1568407 PubMedCrossRefGoogle Scholar
  37. 37.
    Valentin G, Haas P, Gilmour D (2007) The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol. doi: 10.1016/j.cub.2007.05.020 PubMedGoogle Scholar
  38. 38.
    Streichan SJ, Valentin G, Gilmour D et al (2011) Collective cell migration guided by dynamically maintained gradients. Phys Biol 8:45004. doi: 10.1088/1478-3975/8/4/045004 CrossRefGoogle Scholar
  39. 39.
    Donà E, Barry JD, Valentin G et al (2013) Directional tissue migration through a self-generated chemokine gradient. Nature 503:285–289. doi: 10.1038/nature12635 PubMedGoogle Scholar
  40. 40.
    Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15:647–664. doi: 10.1038/nrm3873 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Huebner RJ, Ewald AJ (2014) Cellular foundations of mammary tubulogenesis. Semin Cell Dev Biol 31:124–131. doi: 10.1016/j.semcdb.2014.04.019 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Watson CJ, Khaled WT (2008) Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135:995–1003. doi: 10.1242/dev.005439 PubMedCrossRefGoogle Scholar
  43. 43.
    Robinson GW (2007) Cooperation of signalling pathways in embryonic mammary gland development. Nat Rev Genet 8:963–972. doi: 10.1038/nrg2227 PubMedCrossRefGoogle Scholar
  44. 44.
    Hogg NA, Harrison CJ, Tickle C (1983) Lumen formation in the developing mouse mammary gland. J Embryol Exp Morphol 73:39–57PubMedGoogle Scholar
  45. 45.
    Huebner RJ, Lechler T, Ewald AJ (2014) Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 141:1085–1094. doi: 10.1242/dev.103333 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hinck L, Silberstein GB, Nandi S et al (2005) Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 7:245. doi: 10.1186/bcr1331 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ewald AJ, Huebner RJ, Palsdottir H et al (2012) Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci 125:2638–2654. doi: 10.1242/jcs.096875 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Walck-Shannon E, Hardin J (2014) Cell intercalation from top to bottom. Nat Rev Mol Cell Biol 15:34–48. doi: 10.1038/nrm3723 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Levayer R, Lecuit T (2012) Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 22:61–81. doi: 10.1016/j.tcb.2011.10.001 PubMedCrossRefGoogle Scholar
  50. 50.
    Gjorevski N, Nelson CM (2011) Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol 12:581–593. doi: 10.1038/nrm3168 PubMedCrossRefGoogle Scholar
  51. 51.
    Inman JL, Robertson C, Mott JD, Bissell MJ (2015) Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142:1028–1042. doi: 10.1242/dev.087643 PubMedCrossRefGoogle Scholar
  52. 52.
    Daniel CW, Robinson S, Silberstein GB (1996) The role of TGF-β in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia 1:331–341. doi: 10.1007/BF02017389 PubMedCrossRefGoogle Scholar
  53. 53.
    Silberstein GB, Daniel CW (1987) Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science 237:291–293. doi: 10.1126/science.3474783 PubMedCrossRefGoogle Scholar
  54. 54.
    Nelson CM, Vanduijn MM, Inman JL et al (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300. doi: 10.1126/science.1131000 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Onodera T, Sakai T, Hsu JC et al (2010) Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science 329:562–565. doi: 10.1126/science.1191880 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chi X, Michos O, Shakya R et al (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17:199–209. doi: 10.1016/j.devcel.2009.07.013 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Shakya R, Watanabe T, Costantini F (2005) The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 8:65–74. doi: 10.1016/j.devcel.2004.11.008 PubMedCrossRefGoogle Scholar
  58. 58.
    Patel VN, Likar KM, Zisman-Rozen S et al (2008) Specific heparan sulfate structures modulate FGF10-mediated submandibular gland epithelial morphogenesis and differentiation. J Biol Chem 283:9308–9317. doi: 10.1074/jbc.M709995200 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Packard A, Georgas K, Michos O et al (2013) Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud. Dev Cell 27:319–330. doi: 10.1016/j.devcel.2013.09.001 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Keller R (2006) Mechanisms of elongation in embryogenesis. Development 133:2291–2302. doi: 10.1242/dev.02406 PubMedCrossRefGoogle Scholar
  61. 61.
    Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455. doi: 10.1126/science.2006419 PubMedCrossRefGoogle Scholar
  62. 62.
    Desai R, Sarpal R, Ishiyama N et al (2013) Monomeric α-catenin links cadherin to the actin cytoskeleton. Nat Cell Biol 15:261–273. doi: 10.1038/ncb2685 PubMedCrossRefGoogle Scholar
  63. 63.
    Yonemura S, Wada Y, Watanabe T et al (2010) α-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542. doi: 10.1038/ncb2055 PubMedCrossRefGoogle Scholar
  64. 64.
    Perez-Moreno M, Fuchs E (2006) Catenins: keeping cells from getting their signals crossed. Dev Cell 11:601–612. doi: 10.1016/j.devcel.2006.10.010 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Reynolds AB, Daniel J, McCrea PD et al (1994) Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 14:8333–8342. doi: 10.1128/MCB.14.12.8333 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Daniel JM, Reynolds AB (1995) The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin. Mol Cell Biol 15:4819–4824. doi: 10.1128/MCB.15.9.4819 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yonemura S, Itoh M, Nagafuchi A, Tsukita S (1995) Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J Cell Sci 108:127–142PubMedGoogle Scholar
  68. 68.
    Watabe-Uchida M, Uchida N, Imamura Y et al (1998) α-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol 142:847–857. doi: 10.1083/jcb.142.3.847 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nishimura T, Takeichi M (2009) Chapter 2 remodeling of the adherens junctions during morphogenesis. Curr Top Dev Biol 89:33–54. doi: 10.1016/S0070-2153(09)89002-9 PubMedCrossRefGoogle Scholar
  70. 70.
    Huber AH, Stewart DB, Laurents DV et al (2001) The cadherin cytoplasmic domain is unstructured in the absence of β-catenin. J Biol Chem 276:12301–12309. doi: 10.1074/JBC.M010377200 PubMedCrossRefGoogle Scholar
  71. 71.
    Bajpai S, Correia J, Feng Y et al (2008) α-Catenin mediates initial E-cadherin-dependent cell–cell recognition and subsequent bond strengthening. Proc Natl Acad Sci 105:18331–18336. doi: 10.1073/PNAS.0806783105 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rimm DL, Koslov ER, Kebriaei P et al (1995) α1(E)-Catenin is an actin-binding and actin-bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci USA 92:8813–8817. doi: 10.1073/pnas.92.19.8813 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Irvine KD, Wieschaus E (1994) Cell intercalation during Drosophila germband extension and its regulaton by pair-rule segmentation genes. Development 120:827–841.PubMedGoogle Scholar
  74. 74.
    Zallen JA, Wieschaus E (2004) Patterned gene expression directs bipolar planar polarity in Drosophila. Dev Cell 6:343–355. doi: 10.1016/S1534-5807(04)00060-7 PubMedCrossRefGoogle Scholar
  75. 75.
    Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–671. doi: 10.1038/nature02590 PubMedCrossRefGoogle Scholar
  76. 76.
    Collinet C, Rauzi M, Lenne P, Lecuit T (2015) Local and tissue-scale forces drive oriented junction growth during tissue extension. Nat Cell Biol 17:1247–1258. doi: 10.1038/ncb3226 PubMedCrossRefGoogle Scholar
  77. 77.
    Blankenship JT, Backovic ST, Sanny JSP et al (2006) Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev Cell 11:459–470. doi: 10.1016/j.devcel.2006.09.007 PubMedCrossRefGoogle Scholar
  78. 78.
    Simões Sde M, Blankenship JT, Weitz O et al (2010) Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev Cell 19:377–388. doi: 10.1016/j.devcel.2010.08.011 PubMedCrossRefGoogle Scholar
  79. 79.
    Levayer R, Pelissier-Monier A, Lecuit T (2011) Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat Cell Biol 13:529–542. doi: 10.1038/ncb2224 PubMedCrossRefGoogle Scholar
  80. 80.
    Rauzi M, Lenne P-F, Lecuit T (2010) Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468:1110–1114. doi: 10.1038/nature09566 PubMedCrossRefGoogle Scholar
  81. 81.
    Bardet PL, Guirao B, Paoletti C et al (2013) PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev Cell 25:534–546. doi: 10.1016/j.devcel.2013.04.020 PubMedCrossRefGoogle Scholar
  82. 82.
    Nishimura T, Honda H, Takeichi M (2012) Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149:1084–1097. doi: 10.1016/j.cell.2012.04.021 PubMedCrossRefGoogle Scholar
  83. 83.
    Karner CM, Chirumamilla R, Aoki S et al (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41:793–799. doi: 10.1038/ng.400 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lienkamp SS, Liu K, Karner CM et al (2012) Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 44:1382–1387. doi: 10.1038/ng.2452 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wang J, Mark S, Zhang X et al (2005) Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat Genet 37:980–985. doi: 10.1038/ng1622 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Yamamoto N, Okano T, Ma X, et al (2009) Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 136:1977–1986. doi: 10.1242/dev.030718 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gray RS, Roszko I, Solnica-Krezel L (2011) Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 21:120–133. doi: 10.1016/j.devcel.2011.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wallingford JB (2012) Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol 28:627–653. doi: 10.1146/annurev-cellbio-092910-154208 PubMedCrossRefGoogle Scholar
  89. 89.
    Paré AC, Vichas A, Fincher CT et al (2014) A positional Toll receptor code directs convergent extension in Drosophila. Nature 515:523–527. doi: 10.1038/nature13953 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Heller E, Kumar KV, Grill SW, Fuchs E (2014) Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis. Dev Cell 28:617–632. doi: 10.1016/j.devcel.2014.02.011 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Mine N, Iwamoto R, Mekada E (2005) HB-EGF promotes epithelial cell migration in eyelid development. Development 132:4317–4326. doi: 10.1242/Dev.02030 PubMedCrossRefGoogle Scholar
  92. 92.
    Shih J, Keller R (1992) Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116:915–930PubMedGoogle Scholar
  93. 93.
    Shih J, Keller R (1992) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116:901–914. doi: 10.1007/bf02616114 PubMedGoogle Scholar
  94. 94.
    Marsden M, DeSimone DW (2003) Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr Biol 13:1182–1191. doi: 10.1016/S0960-9822(03)00433-0 PubMedCrossRefGoogle Scholar
  95. 95.
    Davidson LA, Marsden M, Keller R, DeSimone DW (2006) Integrin α5β1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol 16:833–844. doi: 10.1016/j.cub.2006.03.038 PubMedCrossRefGoogle Scholar
  96. 96.
    Gleichauf R (1936) Anatomie und Variabilität des Geschlechtsapparates von Drosophila melanogaster (Meigen). Zeitschrift für wissenschaftliche Zool 148:1–66Google Scholar
  97. 97.
    Adám G, Perrimon N, Noselli S, Adam G (2003) The retinoic-like juvenile hormone controls the looping of left-right asymmetric organs in Drosophila. Development 130:2397–2406. doi: 10.1242/dev.00460 PubMedCrossRefGoogle Scholar
  98. 98.
    Suzanne M, Petzoldt AG, Spéder P et al (2010) Coupling of apoptosis and L/R patterning controls stepwise organ looping. Curr Biol 20:1773–1778. doi: 10.1016/j.cub.2010.08.056 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kuranaga E, Matsunuma T, Kanuka H et al (2011) Apoptosis controls the speed of looping morphogenesis in Drosophila male terminalia. Development 138:1493–1499. doi: 10.1242/dev.058958 PubMedCrossRefGoogle Scholar
  100. 100.
    Keisman EL, Christiansen AE, Baker BS et al (2001) The sex determination gene doublesex regulates the A/P organizer to direct sex-specific patterns of growth in the Drosophila genital imaginal disc. Dev Cell 1:215–225. doi: 10.1016/S1534-5807(01)00027-2 PubMedCrossRefGoogle Scholar
  101. 101.
    Hozumi S, Maeda R, Taniguchi K et al (2006) An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature 440:798–802. doi: 10.1038/nature04625 PubMedCrossRefGoogle Scholar
  102. 102.
    Spéder P, Adám G, Noselli S (2006) Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature 440:803–807. doi: 10.1038/nature04623 PubMedCrossRefGoogle Scholar
  103. 103.
    Coutelis J-B, Géminard C, Spéder P et al (2013) Drosophila left/right asymmetry establishment is controlled by the Hox gene abdominal-B. Dev Cell 24:89–97. doi: 10.1016/j.devcel.2012.11.013 PubMedCrossRefGoogle Scholar
  104. 104.
    González-Morales N, Géminard C, Lebreton G et al (2015) The atypical cadherin Dachsous controls left-right asymmetry in Drosophila. Dev Cell 33:675–689. doi: 10.1016/j.devcel.2015.04.026 PubMedCrossRefGoogle Scholar
  105. 105.
    Taniguchi K, Maeda R, Ando T et al (2011) Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333:339–341. doi: 10.1126/science.1200940 PubMedCrossRefGoogle Scholar
  106. 106.
    Spradling AC (1993) Developmental genetics of oogenesis. In: The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–70Google Scholar
  107. 107.
    Chen DY, Lipari KR, Dehghan Y et al (2016) Symmetry breaking in an edgeless epithelium by Fat2-regulated microtubule polarity. Cell Rep 15:1125–1133. doi: 10.1016/j.celrep.2016.04.014 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331:1071–1074. doi: 10.1126/science.1199424 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Gutzeit H (1990) The microfilament pattern in the somatic follicle cells of mid-vitellogenic ovarian follicles of Drosophila. Eur J Cell Biol 53:349–356PubMedGoogle Scholar
  110. 110.
    Gutzeit HO, Eberhardt W, Gratwohl E (1991) Laminin and basement membrane-associated microfilaments in wild-type and mutant Drosophila ovarian follicles. J Cell Sci 100:781–788PubMedGoogle Scholar
  111. 111.
    Bateman J, Reddy RS, Saito H et al (2001) The receptor tyrosine phosphatase Dlar and integrins organize actin filaments in the Drosophila follicular epithelium. Curr Biol 11:1317–1327. doi: 10.1016/S0960-9822(01)00420-1 PubMedCrossRefGoogle Scholar
  112. 112.
    Frydman HM, Spradling AC (2001) The receptor-like tyrosine phosphatase lar is required for epithelial planar polarity and for axis determination within Drosophila ovarian follicles. Development 128:3209–3220PubMedGoogle Scholar
  113. 113.
    Cetera M, Juan GRR-SJ, Oakes PW et al (2014) Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun 5:1–12. doi: 10.1038/ncomms6511 CrossRefGoogle Scholar
  114. 114.
    Krause M, Dent EW, Bear JE et al (2003) Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–564. doi: 10.1146/annurev.cellbio.19.050103.103356 PubMedCrossRefGoogle Scholar
  115. 115.
    Stradal TE, Scita G (2006) Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol 18:4–10. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  116. 116.
    Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465. doi: 10.1016/S0092-8674(03)00120-X PubMedCrossRefGoogle Scholar
  117. 117.
    Kunda P, Craig G, Dominguez V, Baum B (2003) Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol 13:1867–1875. doi: 10.1016/j.cub.2003.10.005 PubMedCrossRefGoogle Scholar
  118. 118.
    Viktorinová I, Dahmann C (2013) Microtubule polarity predicts direction of egg chamber rotation in Drosophila. Curr Biol 23:1472–1477. doi: 10.1016/j.cub.2013.06.014 PubMedCrossRefGoogle Scholar
  119. 119.
    Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9:860–873. doi: 10.1038/nrm2522 PubMedCrossRefGoogle Scholar
  120. 120.
    Vladar EK, Bayly RD, Sangoram AM et al (2012) Microtubules enable the planar cell polarity of airway cilia. Curr Biol 22:2203–2212. doi: 10.1016/j.cub.2012.09.046 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Shimada Y, Yonemura S, Ohkura H et al (2006) Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev Cell 10:209–222. doi: 10.1016/j.devcel.2005.11.016 PubMedCrossRefGoogle Scholar
  122. 122.
    Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10:865–868. doi: 10.1016/S0960-9822(00)00600-X PubMedCrossRefGoogle Scholar
  123. 123.
    Rogers SL, Wiedemann U, Häcker U et al (2004) Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr Biol. doi: 10.1016/j.cub.2004.09.078 PubMedGoogle Scholar
  124. 124.
    Viktorinová I, König T, Schlichting K, Dahmann C (2009) The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary. Development 136:4123–4132. doi: 10.1242/dev.039099 PubMedCrossRefGoogle Scholar
  125. 125.
    Aurich F, Dahmann C (2016) A mutation in fat2 uncouples tissue elongation from global tissue rotation. Cell Rep 14:2503–2510. doi: 10.1016/j.celrep.2016.02.044 PubMedCrossRefGoogle Scholar
  126. 126.
    Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25:556–566. doi: 10.1016/j.tcb.2015.06.003 PubMedCrossRefGoogle Scholar
  127. 127.
    Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14:777–783. doi: 10.1038/ncb2548 PubMedCrossRefGoogle Scholar
  128. 128.
    Shamir ER, Ewald AJ (2015) Chapter eleven—adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr Top Dev Biol 112:353–382PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929. doi: 10.1038/onc.2008.343 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Huang L, Muthuswamy SK (2010) Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 20:41–50. doi: 10.1016/j.gde.2009.12.001 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bosoi CM, Capra V, Allache R et al (2011) Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects. Hum Mutat 32:1371–1375. doi: 10.1002/humu.21589 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Robinson A, Escuin S, Vekemans KD et al (2012) Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 33:440–447. doi: 10.1002/humu.21662 PubMedCrossRefGoogle Scholar
  133. 133.
    Marmaras A, Berge U, Ferrari A et al (2010) A mathematical method for the 3D analysis of rotating deformable systems applied on lumen-forming MDCK cell aggregates. Cytoskeleton 67:224–240. doi: 10.1002/cm.20438 PubMedGoogle Scholar
  134. 134.
    Tanner K, Mori H, Mroue R et al (2012) Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc Natl Acad Sci USA 109:1973–1978. doi: 10.1073/pnas.1119578109 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Laboratory for Histogenetic DynamicsRIKEN Center for Developmental BiologyKobeJapan
  2. 2.Laboratory of Histogenetic Dynamics, Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations