Skip to main content
Log in

Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51. doi:10.1038/nature12481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64(6):783–790. doi:10.1016/j.neuron.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  3. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11(4):301–307. doi:10.1038/nrm2873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Grad LI, Cashman NR (2014) Prion-like activity of Cu/Zn superoxide dismutase: implications for amyotrophic lateral sclerosis. Prion 8(1):33–41 (pii: 27602 )

    Article  CAS  PubMed  Google Scholar 

  5. Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286(17):15317–15331. doi:10.1074/jbc.M110.209296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Herva ME, Zibaee S, Fraser G, Barker RA, Goedert M, Spillantini MG (2014) Anti-amyloid compounds inhibit alpha-synuclein aggregation induced by protein misfolding cyclic amplification (PMCA). J Biol Chem 289(17):11897–11905. doi:10.1074/jbc.M113.542340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Meyer V, Dinkel PD, Rickman Hager E, Margittai M (2014) Amplification of Tau fibrils from minute quantities of seeds. Biochemistry 53(36):5804–5809. doi:10.1021/bi501050g

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Munch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108(9):3548–3553. doi:10.1073/pnas.1017275108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DM, Akiyama H, Hasegawa M (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4(1):124–134. doi:10.1016/j.celrep.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  10. Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147(3):498–508. doi:10.1016/j.cell.2011.10.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, DeArmond SJ, Prusiner SB (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci USA 110(48):19555–19560. doi:10.1073/pnas.1318268110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yonetani M, Nonaka T, Masuda M, Inukai Y, Oikawa T, Hisanaga S, Hasegawa M (2009) Conversion of wild-type alpha-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem 284(12):7940–7950. doi:10.1074/jbc.M807482200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Prusiner SB (2013) Biology and genetics of prions causing neurodegeneration. Annu Rev Genet 47:601–623. doi:10.1146/annurev-genet-110711-155524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Sajnani G, Silva CJ, Ramos A, Pastrana MA, Onisko BC, Erickson ML, Antaki EM, Dynin I, Vazquez-Fernandez E, Sigurdson CJ, Carter JM, Requena JR (2012) PK-sensitive PrP is infectious and shares basic structural features with PK-resistant PrP. PLoS Pathog 8(3):e1002547. doi:10.1371/journal.ppat.1002547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bate C, Salmona M, Diomede L, Williams A (2004) Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J Biol Chem 279(15):14983–14990. doi:10.1074/jbc.M313061200

    Article  CAS  PubMed  Google Scholar 

  17. Gilch S, Bach C, Lutzny G, Vorberg I, Schatzl HM (2009) Inhibition of cholesterol recycling impairs cellular PrP(Sc) propagation. Cell Mol Life Sci 66(24):3979–3991. doi:10.1007/s00018-009-0158-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gilch S, Kehler C, Schatzl HM (2006) The prion protein requires cholesterol for cell surface localization. Mol Cell Neurosci 31(2):346–353. doi:10.1016/j.mcn.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  19. Hannaoui S, Shim SY, Cheng YC, Corda E, Gilch S (2014) Cholesterol balance in prion diseases and Alzheimer’s disease. Viruses 6(11):4505–4535. doi:10.3390/v6114505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, Prusiner SB (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129(1):121–132

    Article  CAS  PubMed  Google Scholar 

  21. Naslavsky N, Stein R, Yanai A, Friedlander G, Taraboulos A (1997) Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem 272(10):6324–6331

    Article  CAS  PubMed  Google Scholar 

  22. Vey M, Pilkuhn S, Wille H, Nixon R, DeArmond SJ, Smart EJ, Anderson RG, Taraboulos A, Prusiner SB (1996) Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci USA 93(25):14945–14949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15(2):102–111. doi:10.1016/j.tcb.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  24. Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 3:124. doi:10.3389/fphys.2012.00124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100(10):603–615. doi:10.1042/BC20080025

    Article  CAS  PubMed  Google Scholar 

  26. Castro-Seoane R, Hummerich H, Sweeting T, Tattum MH, Linehan JM, Fernandez de Marco M, Brandner S, Collinge J, Klohn PC (2012) Plasmacytoid dendritic cells sequester high prion titres at early stages of prion infection. PLoS Pathog 8(2):e1002538. doi:10.1371/journal.ppat.1002538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Coleman BM, Hanssen E, Lawson VA, Hill AF (2012) Prion-infected cells regulate the release of exosomes with distinct ultrastructural features. FASEB J 26(10):4160–4173. doi:10.1096/fj.11-202077

    Article  CAS  PubMed  Google Scholar 

  28. Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci USA 101(26):9683–9688. doi:10.1073/pnas.0308413101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, Raposo G, Darlix JL (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25(12):2674–2685. doi:10.1038/sj.emboj.7601162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211(5):582–590. doi:10.1002/path.2145

    Article  CAS  PubMed  Google Scholar 

  31. Properzi F, Logozzi M, Abdel-Haq H, Federici C, Lugini L, Azzarito T, Cristofaro I, di Sevo D, Ferroni E, Cardone F, Venditti M, Colone M, Comoy E, Durand V, Fais S, Pocchiari M (2015) Detection of exosomal prions in blood by immunochemistry techniques. J Gen Virol. doi:10.1099/vir.0.000117

    Google Scholar 

  32. Basso M, Pozzi S, Tortarolo M, Fiordaliso F, Bisighini C, Pasetto L, Spaltro G, Lidonnici D, Gensano F, Battaglia E, Bendotti C, Bonetto V (2013) Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J Biol Chem 288(22):15699–15711. doi:10.1074/jbc.M112.425066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42. doi:10.1186/1750-1326-7-42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851. doi:10.1523/JNEUROSCI.5699-09.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gomes C, Keller S, Altevogt P, Costa J (2007) Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett 428(1):43–46. doi:10.1016/j.neulet.2007.09.024

    Article  CAS  PubMed  Google Scholar 

  36. Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O’Neill MA, Yanai A, Silverman JM, Zeineddine R, Corcoran L, Kumita JR, Luheshi LM, Yousefi M, Coleman BM, Hill AF, Plotkin SS, Mackenzie IR, Cashman NR (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA 111(9):3620–3625. doi:10.1073/pnas.1312245111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Properzi F, Logozzi M, Fais S (2013) Exosomes: the future of biomarkers in medicine. Biomark Med 7(5):769–778. doi:10.2217/bmm.13.63

    Article  CAS  PubMed  Google Scholar 

  38. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 103(30):11172–11177. doi:10.1073/pnas.0603838103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. doi:10.1083/jcb.201211138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91. doi:10.1016/j.devcel.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  41. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452. doi:10.1038/nature07961

    Article  CAS  PubMed  Google Scholar 

  42. Babst M (2005) A protein’s final ESCRT. Traffic 6(1):2–9. doi:10.1111/j.1600-0854.2004.00246.x

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt O, Teis D (2012) The ESCRT machinery. Curr Biol 22(4):R116–R120. doi:10.1016/j.cub.2012.01.028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Thery C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. doi:10.1242/jcs.128868

    PubMed  Google Scholar 

  45. Tamai K, Tanaka N, Nakano T, Kakazu E, Kondo Y, Inoue J, Shiina M, Fukushima K, Hoshino T, Sano K, Ueno Y, Shimosegawa T, Sugamura K (2010) Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun 399(3):384–390. doi:10.1016/j.bbrc.2010.07.083

    Article  CAS  PubMed  Google Scholar 

  46. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247. doi:10.1126/science.1153124

    Article  CAS  PubMed  Google Scholar 

  47. Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, Lopez-Martin S, Ursa A, Sanchez-Madrid F, Vazquez J, Yanez-Mo M (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 288(17):11649–11661. doi:10.1074/jbc.M112.445304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21(4):708–721. doi:10.1016/j.devcel.2011.08.019

    Article  PubMed Central  PubMed  Google Scholar 

  49. Archer F, Bachelin C, Andreoletti O, Besnard N, Perrot G, Langevin C, Le Dur A, Vilette D, Baron-Van Evercooren A, Vilotte JL, Laude H (2004) Cultured peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol 78(1):482–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zeringer E, Barta T, Li M, Vlassov AV (2015) Strategies for isolation of exosomes. Cold Spring Harb Protoc 4:319–323. doi:10.1101/pdb.top074476

    Google Scholar 

  51. Arellano-Anaya ZE, Savistchenko J, Mathey J, Huor A, Lacroux C, Andreoletti O, Vilette D (2011) A simple, versatile and sensitive cell-based assay for prions from various species. PLoS One 6(5):e20563. doi:10.1371/journal.pone.0020563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S, Laude H (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci USA 98(7):4055–4059. doi:10.1073/pnas.061337998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Du X, Kazim AS, Brown AJ, Yang H (2012) An essential role of Hrs/Vps27 in endosomal cholesterol trafficking. Cell Rep 1(1):29–35. doi:10.1016/j.celrep.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  54. Marijanovic Z, Caputo A, Campana V, Zurzolo C (2009) Identification of an intracellular site of prion conversion. PLoS Pathog 5(5):e1000426. doi:10.1371/journal.ppat.1000426

    Article  PubMed Central  PubMed  Google Scholar 

  55. Marzo L, Marijanovic Z, Browman D, Chamoun Z, Caputo A, Zurzolo C (2013) 4-hydroxytamoxifen leads to PrPSc clearance by conveying both PrPC and PrPSc to lysosomes independently of autophagy. J Cell Sci 126(Pt 6):1345–1354. doi:10.1242/jcs.114801

    Article  CAS  PubMed  Google Scholar 

  56. Puntoni M, Sbrana F, Bigazzi F, Sampietro T (2012) Tangier disease: epidemiology, pathophysiology, and management. Am J Cardiovasc Drugs 12(5):303–311. doi:10.2165/11634140-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  57. Kumar R, McClain D, Young R, Carlson GA (2008) Cholesterol transporter ATP-binding cassette A1 (ABCA1) is elevated in prion disease and affects PrPC and PrPSc concentrations in cultured cells. J Gen Virol 89(Pt 6):1525–1532. doi:10.1099/vir.0.83358-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Cui HL, Guo B, Scicluna B, Coleman BM, Lawson VA, Ellett L, Meikle PJ, Bukrinsky M, Mukhamedova N, Sviridov D, Hill AF (2014) Prion infection impairs cholesterol metabolism in neuronal cells. J Biol Chem 289(2):789–802. doi:10.1074/jbc.M113.535807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Jiang H, Badralmaa Y, Yang J, Lempicki R, Hazen A, Natarajan V (2012) Retinoic acid and liver X receptor agonist synergistically inhibit HIV infection in CD4 + T cells by up-regulating ABCA1-mediated cholesterol efflux. Lipids Health Dis 11:69. doi:10.1186/1476-511X-11-69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Gilch S, Nunziante M, Ertmer A, Schatzl HM (2007) Strategies for eliminating PrP(c) as substrate for prion conversion and for enhancing PrP(Sc) degradation. Vet Microbiol 123(4):377–386. doi:10.1016/j.vetmic.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  61. Kanu N, Imokawa Y, Drechsel DN, Williamson RA, Birkett CR, Bostock CJ, Brockes JP (2002) Transfer of scrapie prion infectivity by cell contact in culture. Curr Biol 12(7):523–530 (pii: S0960982202007224 )

    Article  CAS  PubMed  Google Scholar 

  62. Paquet S, Langevin C, Chapuis J, Jackson GS, Laude H, Vilette D (2007) Efficient dissemination of prions through preferential transmission to nearby cells. J Gen Virol 88(Pt 2):706–713. doi:10.1099/vir.0.82336-0

    Article  CAS  PubMed  Google Scholar 

  63. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336. doi:10.1038/ncb1841

    Article  CAS  PubMed  Google Scholar 

  64. Guo BB, Bellingham SA, Hill AF (2014) The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem. doi:10.1074/jbc.M114.605253

    Google Scholar 

  65. Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37(3):323–332. doi:10.1007/s00249-007-0246-z

    Article  CAS  PubMed  Google Scholar 

  66. Mattei V, Barenco MG, Tasciotti V, Garofalo T, Longo A, Boller K, Lower J, Misasi R, Montrasio F, Sorice M (2009) Paracrine diffusion of PrP(C) and propagation of prion infectivity by plasma membrane-derived microvesicles. PLoS One 4(4):e5057. doi:10.1371/journal.pone.0005057

    Article  PubMed Central  PubMed  Google Scholar 

  67. Dron M, Moudjou M, Chapuis J, Salamat MK, Bernard J, Cronier S, Langevin C, Laude H (2010) Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J Biol Chem 285(14):10252–10264. doi:10.1074/jbc.M109.083857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179(3):485–500. doi:10.1083/jcb.200702115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Choi HY, Karten B, Chan T, Vance JE, Greer WL, Heidenreich RA, Garver WS, Francis GA (2003) Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease. J Biol Chem 278(35):32569–32577. doi:10.1074/jbc.M304553200

    Article  CAS  PubMed  Google Scholar 

  70. Lee CY, Ruel I, Denis M, Genest J, Kiss RS (2013) Cholesterol trapping in Niemann-Pick disease type B fibroblasts can be relieved by expressing the phosphotyrosine binding domain of GULP. J Clin Lipidol 7(2):153–164. doi:10.1016/j.jacl.2012.02.006

    Article  PubMed  Google Scholar 

  71. Razi M, Futter CE (2006) Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol Biol Cell 17(8):3469–3483. doi:10.1091/mbc.E05-11-1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Goold R, Rabbanian S, Sutton L, Andre R, Arora P, Moonga J, Clarke AR, Schiavo G, Jat P, Collinge J, Tabrizi SJ (2011) Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat Commun 2:281. doi:10.1038/ncomms1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Godsave SF, Wille H, Kujala P, Latawiec D, DeArmond SJ, Serban A, Prusiner SB, Peters PJ (2008) Cryo-immunogold electron microscopy for prions: toward identification of a conversion site. J Neurosci 28(47):12489–12499. doi:10.1523/JNEUROSCI.4474-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E, Greene LE (2015) The multivesicular body is the major internal site of prion conversion. J Cell Sci 128(7):1434–1443. doi:10.1242/jcs.165472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Arellano-Anaya ZE, Huor A, Leblanc P, Lehmann S, Provansal M, Raposo G, Andreoletti O, Vilette D (2014) Prion strains are differentially released through the exosomal pathway. Cell Mol Life Sci. doi:10.1007/s00018-014-1735-8

    PubMed  Google Scholar 

  76. Nishida N, Harris DA, Vilette D, Laude H, Frobert Y, Grassi J, Casanova D, Milhavet O, Lehmann S (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J Virol 74(1):320–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1)(19–30):11–13. doi:10.1038/ncb2000

    Google Scholar 

  78. Alais S, Soto-Rifo R, Balter V, Gruffat H, Manet E, Schaeffer L, Darlix JL, Cimarelli A, Raposo G, Ohlmann T, Leblanc P (2012) Functional mechanisms of the cellular prion protein (PrP(C)) associated anti-HIV-1 properties. Cell Mol Life Sci 69(8):1331–1352. doi:10.1007/s00018-011-0879-z

    Article  CAS  PubMed  Google Scholar 

  79. Leblanc P, Baas D, Darlix JL (2004) Analysis of the interactions between HIV-1 and the cellular prion protein in a human cell line. J Mol Biol 337(4):1035–1051. doi:10.1016/j.jmb.2004.02.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CNRS, INSERM, INRA and the ANR program (ExoPrion AO2008). KL obtained a one-year FINOVI fellowship. We thank Jennifer T. Miller (NCI-Frederick) for carefully reading the manuscript. We acknowledge the PLATIM microscope platform at ENS-Lyon (SFR BioSciences Gerland–Lyon Sud UMS3444/US8, France).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Didier Vilette or Pascal Leblanc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2015_1945_MOESM1_ESM.eps

Supplementary material Figure S1: HRS depletion inhibits PrP res formation. (a) Mov 127S cells were transduced with lentivectors encoding ShRNAs Sh-CT (lane 1) or three different Sh-HRS (1, 2 and 3; lanes 2-4). Cell lysates (20 μg) were immunoblotted using anti-HRS (upper, left panel) or anti-PrP antibodies (bottom, left panel). Cell lysates (300 μg) were PK digested and immunoblotted using anti-PrP antibodies (right panel). Note the strong decrease of PrPres in Sh-HRS1, 2 and 3 (lanes 2-4) compared to Sh-CT (lane 1). Non-PK digested Sh-CT lysate was used as a negative control of PK digestion (lane 5). (b) Mov 127S cells transduced with lentivectors encoding Sh-CT or Sh-HRS1 were fixed and analyzed by confocal microscopy using anti-PrP (red) and anti-Caveolin1 (green) antibodies. Images are single sections through the middle of the cells. Abnormal PrP was detected after incubating the cells 5 min with 3 M guanidine thiocyanate. Note the strong decrease of abnormal PrP signal in Sh-HRS1 cells. Nuclei were stained with DAPI. Scale bars represent 10 μm. (c) Infected scN2a#22L cells were transduced with ShRNAs Sh-CT (non-specific target negative control; lanes 5 and 7) or Sh-HRS1 (lanes 6 and 8). After puromycin selection, cells were harvested and HRS depletion was assessed by immunoblotting (upper panel). Note the strong decrease of HRS signal (lane 6) compared to CT ShRNA (lane 5). Loading control was assessed using coomassie staining (bottom panel). Cell lysates from Sh-CT (lane 7) and Sh-HRS KD (lane 8) cells were PK digested and PrPres was detected by Western blotting. Note the strong decrease of PrPres signal in HRS-depleted cells (lane 8) compared to control cells (lane 7). The normal N2a#58 (lanes 1 and 3) and infected N2a#22L cells (lanes 2 and 4) were used as negative and positive controls for PK digestion and PrPres detection. (EPS 13072 kb)

18_2015_1945_MOESM2_ESM.eps

Supplementary material Figure S2: HRS depletion does affect exosomal release. (a) Mov 127S cells were transduced with lentivectors encoding ShRNAs Sh-CT (lane 1) or Sh-HRS1 (lane 2). Cell lysates were immunoblotted using anti-HRS (upper panel) or anti-GAPDH antibodies (bottom panel) for loading control. (b) Cell lysates (lanes 1&2) and the 100 K pellets (lanes 3&4) from supernatants of Mov 127S cells transduced with ShRNA-CT (lanes 1 and 3) and ShRNA-HRS1 (lanes 2 and 4) lentivectors were analyzed by Western blotting using antibodies against Tsg101 or Flotillin-1 as exosomal proteins and against Calnexin as negative exosomal control or anti-GAPDH for cell lysate loading control. Note that Tsg101 and Flotillin-1 signals were similar in 100 K pellets from ShRNA-HRS1 and shRNA-CT. The data are representative of two experiments carried out with independent transduced cells. (EPS 2230 kb)

18_2015_1945_MOESM3_ESM.eps

Supplementary material Figure S3: HRS depletion causes accumulation of cholesterol in infected Mov cells. Mov 127S cells transduced with lentivectors encoding Sh-CT or Sh-HRS1 were stained with Filipin (green) to visualize the distribution of free cholesterol. Note the punctuate signals of free cholesterol in Sh-HRS1 cells (see white arrows) compared to the diffuse signal observed in Sh-CT cells. Representative images are shown. Scale bar represents 10 μm. (EPS 9726 kb)

18_2015_1945_MOESM4_ESM.eps

Supplementary material Figure S4: Decrease of PrP res in HRS-depleted cells is not inhibited by NH4Cl treatment. (a) Mov 127S cells transduced with Sh-CT (lanes 1 and 3) or Sh-HRS1 (lanes 2 and 4) were treated for 16 h with ammonium chloride (NH4Cl) (20 mM) (lanes 3 and 4) or with PBS (lanes 1 and 2). Cell lysates (20 μg) were analyzed by immunoblotting with anti-PrP, anti-p62 and anti-LC3 antibodies, as indicated. Cyclophilin A (Cyp A) was used as a loading control. Note the accumulation of PrP, p62 and LC3-II as evidence of successful inhibition of the degradation processes in NH4Cl-treated cells. (b) Mov 127S cells transduced with Sh-CT (lanes 1, 2, 5, 6) or Sh-HRS1 (lanes 3, 4, 7, 8) were treated for 16 h with ammonium chloride (NH4Cl) (20 mM) (lanes 5 to 8) or not (lanes 1 to 4) as in a). Cell lysates were analyzed by immunoblotting for PrP before (-) or after (+) PK digestion. Note that PrPres did not raise in NH4Cl-treated Mov 127S cells. Undigested lysates were also analyzed for p62 and for GAPDH (as a loading control). (EPS 3144 kb)

18_2015_1945_MOESM5_ESM.eps

Supplementary material Figure S5: Total PrP distribution in Mov 127S cells is not affected by HRS depletion. (a) DRMs isolation from Mov 127S cells transduced with lentivectors encoding Sh-CT and Sh-HRS1. Sh-CT and Sh-HRS1 cells were lysed in buffer containing 1 % triton X100 at 4 °C. Equivalent amount of cell lysates were fractionated by flotation on a 5-30-40 % sucrose step gradient. Twelve fractions were collected from the top of the gradient and were analyzed by Western blotting using anti-PrP and anti-Flotillin-1 (as a DRM-associated protein) antibodies. DRMs are in fractions 3-4 while fractions 9-12 correspond to soluble proteins. (b) Mov 127S cells transduced with lentivectors encoding Sh-CT or Sh-HRS1 were fixed and analyzed by confocal microscopy using anti-PrP (red) and anti-Caveolin1 (green) antibodies. Images are single sections through the middle of the cells. Nuclei were stained with DAPI. Scale bars represent 10 μm. (EPS 12567 kb)

18_2015_1945_MOESM6_ESM.eps

Supplementary material Figure S6: Release of the exosomal markers Alix and Flotillin-1 were marginally decreased in GW4869 treated cells. Quantifications of band signals for Alix (left panel) and Flotillin-1 (right panel) exosomal markers from 4 independent experiments. Values are given as mean ± SD. *P value < 0.05. Statistics and calculation of the P value were done by the GraphPad PRISM software with the Mann–Whitney test. (EPS 373 kb)

18_2015_1945_MOESM7_ESM.eps

Supplementary material Figure S7: The neutral Sphingomyelinase inhibitor GW4869 strongly reduces prion infectivity release in ovRK13 127S (Rov 127S) cellular model. Rov 127S cells were incubated with the diluent (DMSO, negative control) or with the neutral Sphingomyelinase inhibitor GW4869 (10 μM) for 26 h. Cells were collected, homogenized in PBS and 100 K pellets were harvested from the corresponding culture supernatants. a) Analysis of prion infectivity in DMSO- and GW4869-treated Rov 127S cells and in their corresponding 100 K pellets. For SCA experiments, recipient ovRK13 target cells were inoculated with 1/1, 1/3 and 1/9 inoculum dilutions (corresponding to 30, 10 and 3.3 μg of cellular proteins, respectively), of DMSO- and GW4869-treated Rov cells (lanes 1-7) and with the corresponding 100 K pellets (equivalent to 450 μl of conditioned medium) (lanes 8 to 10). No PrPres was detected when recipient ovRK13 cells that did not express the PrPC protein (-dox) were inoculated with cell homogenate and 100 K pellet (lanes 1 and 9). Note that GW4869 treatment did not affect cell infectivity but strongly inhibited the infectivity in the 100 K pellet. (b) Biochemical analysis of 100 K pellets from DMSO- (lane 1) and GW4869-treated (lane 2) Rov127S cells. 100 K pellets corresponding to 20 ml of culture medium were analyzed by immunoblotting for Alix, TSG101 and Flotillin-1 exosomal proteins. Note that Alix, Tsg101 and Flotillin-1 signals are not or marginally affected by the GW4869 treatment as observed in the Mov 127S cellular model. (EPS 1937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilette, D., Laulagnier, K., Huor, A. et al. Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell. Mol. Life Sci. 72, 4409–4427 (2015). https://doi.org/10.1007/s00018-015-1945-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1945-8

Keywords

Navigation