Swiss Journal of Geosciences

, Volume 111, Issue 1–2, pp 341–352 | Cite as

Integrated foraminifera and δ13C stratigraphy across the Cenomanian–Turonian event interval in the eastern Baltic (Lithuania)

  • Agnė Venckutė-Aleksienė
  • Andrej Spiridonov
  • Andrius Garbaras
  • Sigitas Radzevičius


The Cenomanian–Turonian transition marks one of the most important extinction episodes of the Mesozoic era. This extinction event was associated with the development of widespread oceanic anoxia and pronounced stable carbon isotopic excursion. Despite its importance, the effects of the perturbation on higher latitude biotas, and from the Baltic region in particular, are currently underexplored. Therefore, in this contribution we present the fossil record of a foraminifera succession integrated with δ13C trends from two deep cores: Bliūdsukiai-19 from western Lithuania and Baltašiškė-267 from southern Lithuania. Two foraminiferal zones were distinguished: Rotalipora cushmani from the upper Cenomanian and Whiteinella archaeocretacea from the boundary strata between the Cenomanian and Turonian in the Baltašiškė-267 core section, and a W. archaeocretacea Zone in the Bliūdsukiai-19 core section. A chemostratigraphical analysis of the stable carbon isotopes revealed a positive Cenomanian–Turonian δ13C anomaly, with maximum values reaching 3.57‰ in the upper part of the Bliūdsukiai-19 core section. A non-metric multidimensional scaling analysis of the foraminifera communities revealed that the major changes in their assemblages were strongly temporally organized and associated with the changes in the stable carbon isotopic ratios. This fact points to the significant effects of the C–T extinction event on the northern Neotethys paleocommunities.


Foraminifera Cretaceous Cenomanian-Turonian boundary δ13C stratigraphy 



We would like to thank two anonymous reviewers for their comments on the article and we also thank Gailė Žaludienė (Nature Research Centre, Vilnius) for her assistance with the SEM analyses of the samples.

Supplementary material

15_2017_296_MOESM1_ESM.xls (34 kb)
Supplementary material 1 (XLS 34 kb)


  1. Adnet, S., Cappetta, H., & Mertiniene, R. (2008). Re-evaluation of squaloid shark records from the Albian and Cenomanian of Lithuania. Cretaceous Research, 29, 711–722.CrossRefGoogle Scholar
  2. Aleksienė, A. (2010). Cenomanian–Coniacian upper cretaceous foraminiferal fauna of Lithuania. Geologija, 52, 9–15.CrossRefGoogle Scholar
  3. Bardet, N. (1994). Extinction events among Mesozoic marine reptiles. Historical Biology, 7, 313–324.CrossRefGoogle Scholar
  4. Bardet, N., Houssaye, A., Rage, J.-C., & Suberbiola, X. P. (2008). The Cenomanian–Turonian (late Cretaceous) radiation of marine squamates (Reptilia): the role of the Mediterranean Tethys. Bulletin de la Société géologique de France, 179, 605–622.CrossRefGoogle Scholar
  5. Batenburg, S. J., De Vleeschouwer, D., Sprovieri, M., Hilgen, F. J., Gale, A. S., Singer, B. S., et al. (2016). Orbital control on the timing of oceanic anoxia in the Late Cretaceous. Climate of the Past, 12, 1995.CrossRefGoogle Scholar
  6. Benson, R. B. J., Butler, R. J., Lindgren, J., Smith, A. S. (2010). Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society of London B: Biological Sciences, 277(1683), 829–834.CrossRefGoogle Scholar
  7. Caron, M. (1985). Cretaceous planktic foraminifera. In H. M. Bolli, J. B. Saunders, & K. Perch-Nielsen (Eds.), Plankton stratigraphy (pp. 17–86). Cambridge: Cambridge University Press.Google Scholar
  8. Dalinkevičius, J. A. (1935). On the fossil fishes of the Lithuanian Chalk: I. Selachii: Vytauto Didžiojo Universitetas, Kaunas.Google Scholar
  9. Desmares, D., Crognier, N., Bardin, J., Testé, M., Beaudoin, B., & Grosheny, D. (2016). A new proxy for Cretaceous paleoceanographic and paleoclimatic reconstructions: Coiling direction changes in the planktonic foraminifera Muricohedbergella delrioensis. Palaeogeography, Palaeoclimatology, Palaeoecology, 445, 8–17.CrossRefGoogle Scholar
  10. Eaton, J. G., & Kirkland, J. I. (2003). Diversity patterns of nonmarine Cretaceous vertebrates of the western interior basin, high-resolution approaches in stratigraphic paleontology (pp. 263–313). New York: Springer.Google Scholar
  11. Eaton, J. G., Kirkland, J. I., Hutchison, J. H., Denton, R., O’Neill, R. C., & Parrish, J. M. (1997). Nonmarine extinction across the Cenomanian–Turonian boundary, southwestern Utah, with a comparison to the Cretaceous–Tertiary extinction event. Geological Society of America Bulletin, 109, 560–567.CrossRefGoogle Scholar
  12. Elder, W. P. (1989). Molluscan extinction patterns across the Cenomanian–Turonian stage boundary in the Western Interior of the United States. Paleobiology, 15, 299–320.CrossRefGoogle Scholar
  13. Fraass, A. J., Kelly, D. C., & Peters, S. E. (2015). Macroevolutionary history of the planktic foraminifera. Annual Review of Earth and Planetary Sciences, 43, 139–166.CrossRefGoogle Scholar
  14. Gale, A. S., Jenkyns, H. C., Kennedy, W. J., & Corfield, R. M. (1993). Chemostratigraphy versus biostratigraphy: Data from around the Cenomanian–Turonian boundary. Journal of the Geological Society, 150, 29–32.CrossRefGoogle Scholar
  15. Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray, D. S., et al. (2000). Marine biodiversity through the Late Cenomanian-Early Turonian: Palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society, 157, 745–757.CrossRefGoogle Scholar
  16. Grigelis, A. (1996). Lithostratigraphic subdivision of the Cretaceous and Palaeogene in Lithuania. Geologija, 20, 45–55.Google Scholar
  17. Grigelis, A., & Leszczyński, K. (1998). Cretaceous: Stratigraphy and facies development: Geological and tectonic evolution. In S. Marek (Ed.), Atlas of structural evolution of the Permian-Mesozoic complex of northeastern Poland, Lithuania and adjacent Baltic areas (pp. 18–21). Warszawa: Polish Geological Institute.Google Scholar
  18. Hallam, A., & Wignall, P. B. (1999). Mass extinctions and sea-level changes. Earth-Science Reviews, 48, 217–250.CrossRefGoogle Scholar
  19. Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58.CrossRefGoogle Scholar
  20. Harries, P. J. (2003). A reappraisal of the relationship between sea level and species richness, high-resolution approaches in stratigraphic paleontology (pp. 227–261). New York: Springer.Google Scholar
  21. Harries, P. J., & Little, C. T. S. (1999). The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: Similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 39–66.CrossRefGoogle Scholar
  22. Hart, M. B. (1999). The evolution and biodiversity of Cretaceous planktonic Foraminiferida. Geobios, 32, 247–255.CrossRefGoogle Scholar
  23. Hart, M. B., Bromley, R. G., & Packer, S. R. (2012). Anatomy of the stratigraphical boundary between the Arnager Greensand and Arnager Limestone (Upper Cretaceous) on Bornholm, Denmark. Proceedings of the Geologists’ Association, 123, 471–478.CrossRefGoogle Scholar
  24. Hart, M. B., & Leary, P. N. (1991). Stepwise mass extinctions: The case for the Late Cenomanian event. Terra Nova, 3, 142–147.CrossRefGoogle Scholar
  25. Hasegawa, T., & Saito, T. (1993). Global synchroneity of a positive carbon isotope excursion at the Cenomanian/Turonian boundary: Validation by calcareous microfossil biostratigraphy of the Yezo Group, Hokkaido, Japan. Island Arc, 2, 181–191.CrossRefGoogle Scholar
  26. Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P. N., Tocher, B. A., et al. (1988). Microfossil assemblages and the Cenomanian–Turonian (late Cretaceous) oceanic anoxic event. Cretaceous Research, 9, 3–103.CrossRefGoogle Scholar
  27. Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., Pearce, M. A. (2011). Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography, 26, PA3201. Scholar
  28. Jenkyns, H. C., Dickson, A. J., Ruhl, M., & Boorn, S. H. J. M. (2017). Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: Deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous). Sedimentology, 64, 16–43.CrossRefGoogle Scholar
  29. Kauffman, E. G., & Hart, M. B. (1996). Cretaceous bio-events, Global events and event stratigraphy in the Phanerozoic (pp. 285–312). New York: Springer.CrossRefGoogle Scholar
  30. Keller, G., Han, Q., Adatte, T., & Burns, S. J. (2001). Palaeoenvironment of the Cenomanian–Turonian transition at Eastbourne, England. Cretaceous Research, 22, 391–422.CrossRefGoogle Scholar
  31. Keller, G., & Pardo, A. (2004). Age and paleoenvironment of the Cenomanian–Turonian global stratotype section and point at Pueblo, Colorado. Marine Micropaleontology, 51, 95–128.CrossRefGoogle Scholar
  32. Kennedy, W. J., Walaszczyk, I., & Cobban, W. A. (2005). The global boundary stratotype section and point for the base of the Turonian stage of the Cretaceous: Pueblo, Colorado, USA. Episodes-Newsmagazine of the International Union of Geological Sciences, 28, 93–104.Google Scholar
  33. Kerr, A. C. (1998). Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary? Journal of the Geological Society, 155, 619–626.CrossRefGoogle Scholar
  34. Kędzierski, M., Machaniec, E., Rodríguez-Tovar, F. J., & Uchman, A. (2012). Bio-events, foraminiferal and nannofossil biostratigraphy of the Cenomanian/Turonian boundary interval in the Subsilesian Nappe, Rybie section, Polish Carpathians. Cretaceous Research, 35, 181–198.CrossRefGoogle Scholar
  35. Li, Y.-X., Montañez, I. P., Liu, Z., & Ma, L. (2017). Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2). Earth and Planetary Science Letters, 462, 35–46.CrossRefGoogle Scholar
  36. Luciani, V., & Cobianchi, M. (1999). The Bonarelli Level and other black shales in the Cenomanian–Turonian of the northeastern Dolomites (Italy): calcareous nannofossil and foraminiferal data. Cretaceous Research, 20, 135–167.CrossRefGoogle Scholar
  37. Meyers, S. R., Siewert, S. E., Singer, B. S., Sageman, B. B., Condon, D. J., Obradovich, J. D., et al. (2012). Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian–Turonian boundary interval, Western Interior Basin, USA. Geology, 40, 7–10.CrossRefGoogle Scholar
  38. Miller, A. I. (1997). Coordinated stasis or coincident relative stability? Paleobiology, 23, 155–164.CrossRefGoogle Scholar
  39. Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Hernández, J. C., Olsson, R. K., et al. (2003). Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world. Geology, 31, 585–588.CrossRefGoogle Scholar
  40. Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., & Heine, C. (2008). Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319, 1357–1362.CrossRefGoogle Scholar
  41. Ogg, J. G., Hinnov, L. A., Huang, C. (2012). Cretaceous. In: F. M. Gradstein, J. G. Ogg, S. Mark, G. Ogg (Eds). The geologic time scale 2012 (pp. 793–853). Elsevier, Amsterdam.Google Scholar
  42. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. (2015). Package ‘vegan’. Community ecology package, version, 2(2-1), 1–280.Google Scholar
  43. Orth, C. J., Attrep, M., Quintana, L. R., Elder, W. P., Kauffman, E. G., Diner, R., et al. (1993). Elemental abundance anomalies in the late Cenomanian extinction interval: A search for the source (s). Earth and Planetary Science Letters, 117, 189–204.CrossRefGoogle Scholar
  44. Packer, S. R., & Hart, M. B. (1994). Evidence for sea level change from the Cretaceous of Bornholm, Denmark. GFF, 116, 167–173.CrossRefGoogle Scholar
  45. Patzkowsky, M. E., & Holland, S. M. (2012). Stratigraphic paleobiology: Understanding the distribution of fossil taxa in time and space. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  46. Paškevičius, J. (1997). The geology of the Baltic Republics (p. 387). Vilnius: Vilnius University and Geological Survey of Lithuania.Google Scholar
  47. Peryt, D., & Wyrwicka, K. (1991). The Cenomanian–Turonian oceanic anoxic event in SE Poland. Cretaceous Research, 12, 65–80.CrossRefGoogle Scholar
  48. Peters, S. E. (2005). Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National academy of Sciences of the United States of America, 102, 12326–12331.CrossRefGoogle Scholar
  49. Peters, S. E., & Foote, M. (2002). Determinants of extinction in the fossil record. Nature, 416, 420–424.CrossRefGoogle Scholar
  50. Philip, J., Floquet, M., Platel, J. P., Bergerat, F., Sandulescu, M., Bara-Boshkin, E., Amon, E. O., Guiraud, R., Vaslet, D., Le Nindre, Y. (2000). Map 14—Late Cenomanian (94.7 to 93.5 Ma). Atlas Peri-Tethys, Palaeogeographical maps. CCGM/CGMW, Paris.Google Scholar
  51. Prokoph, A., Villeneuve, M., Agterberg, F. P., & Rachold, V. (2001). Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian–Turonian boundary. Geology, 29, 523–526.CrossRefGoogle Scholar
  52. R Development Core Team, 2015. R: A Language and Environment for Statistical Computing. Version 3.1.3. R Foundation for Statistical Computing, Vienna.Google Scholar
  53. Robaszynski, F. (1984). Atlas of late Cretaceous globotruncanids. Rev. Micropaleont., 26, 145–305.Google Scholar
  54. Robaszynski, F., & Caron, M. (1995). Foraminiferes planctoniques du Cretace; commentaire de la zonation Europe-Mediterranee. Bulletin de la Société géologique de France, 166, 681–692.Google Scholar
  55. Ruban, D. A., Forster, A., Desmares, D. (2011). Late Cretaceous marine biodiversity dynamics in the Eastern Caucasus, northern Neo-Tethys Ocean: Regional imprints of global events. Geoloski anali Balkanskoga poluostrva, 29–46.Google Scholar
  56. Sachs, S., Wilmsen, M., Knueppe, J., Hornung, J. J., & Kear, B. P. (2017). Cenomanian–Turonian marine amniote remains from the Saxonian Cretaceous Basin of Germany. Geological Magazine, 154, 237–246.CrossRefGoogle Scholar
  57. Sageman, B. B., Kauffman, E. G., Harries, P. J., & Elder, W. P. (1997). Cenomanian/Turonian bioevents and ecostratigraphy in the Western Interior Basin: contrasting scales of local, regional, and global events. In C. E. Brett & G. C. Baird (Eds.), Paleontological events: Stratigraphic, ecological and evolutionary implications (pp. 520–570). New York: Columbia University Press.Google Scholar
  58. Sageman, B. B., Meyers, S. R., & Arthur, M. A. (2006). Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype. Geology, 34, 125–128.CrossRefGoogle Scholar
  59. Sageman, B. B., Rich, J., Arthur, M. A., Dean, W. E., Savrda, C. E., Bralower, T. J. (1998). Multiple Milankovitch cycles in the Bridge Creek Limestone (Cenomanian–Turonian), Western Interior Basin.Google Scholar
  60. Sakamoto, M., Venditti, C., Benton, M. J. (2017). ‘Residual diversity estimates’ do not correct for sampling bias in palaeodiversity data. Methods in Ecology and Evolution, 8(4), 453–459.CrossRefGoogle Scholar
  61. Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., & Scholle, P. A. (1987). The Cenomanian–Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. Geological Society, London, Special Publications, 26, 371–399.CrossRefGoogle Scholar
  62. Schlanger, S. O., & Jenkyns, H. C. (1976). Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw, 55, 179–184.Google Scholar
  63. Sepkoski, J. J. (1993). Ten years in the library: New data confirm paleontological patterns. Paleobiology, 19, 43–51.CrossRefGoogle Scholar
  64. Sinton, C. W., & Duncan, R. A. (1997). Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian–Turonian boundary. Economic Geology, 92, 836–842.CrossRefGoogle Scholar
  65. Takahashi, A. (2005). Diversity changes in Cretaceous inoceramid bivalves of Japan. Paleontological Research, 9, 217–232.CrossRefGoogle Scholar
  66. Tsikos, H., Jenkyns, H. C., Walsworth-Bell, B., Petrizzo, M. R., Forster, A., Kolonic, S., et al. (2004). Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: Correlation and implications based on three key localities. Journal of the Geological Society, 161, 711–719.CrossRefGoogle Scholar
  67. Uličný, D., Hladiková, J., & Hradecká, L. (1993). Record of sea-level changes, oxygen depletion and the δ13C anomaly across the Cenomanian–Turonian boundary, Bohemian Cretaceous Basin. Cretaceous Research, 14, 211–234.CrossRefGoogle Scholar
  68. Vadja-Santivanez, V., & Solakius, N. (1999). Palynomorphs, foraminifera, and calcispheres from the greensand—limestone transition at Arnager, Bornholm: Evidence of transgression during the Late Cenomanian to Early Coniacian. GFF, 121, 281–286.CrossRefGoogle Scholar
  69. Yasuhara, M., Hunt, G., Cronin, T. M., Hokanishi, N., Kawahata, H., Tsujimoto, A., et al. (2012). Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology, 38, 162–179.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Laboratory of Bedrock GeologyNature Research CentreVilniusLithuania
  2. 2.Department of Geology and Mineralogy, Faculty of Chemistry and GeosciencesVilnius UniversityVilniusLithuania
  3. 3.Department of Nuclear ResearchCenter for Physical Sciences and TechnologyVilniusLithuania

Personalised recommendations