Archiv der Mathematik

, Volume 68, Issue 5, pp 418–429 | Cite as

On the existence of topological ovals in flat projective planes

  • B. Polster
  • N. Rosehr
  • G. F. Steinke


We show that every flat projective plane contains topological ovals. This is achieved by completing certain closed partial ovals, the so-called quasi-ovals, to topological ovals.

Mathematics Subject Classification (1991)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Buchanan, H. Hähl and R. Löwen, Topologische Ovale. Geom. Dedicata 9, 401–424 (1980).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Mazurkiewicz, Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs. (Polish), C. R. Soc. Sci. Varsovie Classe III 4, 382–384 (1912), French translation in: Travaux de topologie et ses applications. PWN-Éditions Scientifiques de Pologne, Warszawa, 46 – 47 (1969).Google Scholar
  3. [3]
    H. Salzmann, Topological planes. Adv. in Math. 2, 1–60 (1967).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen and M. Stroppel, Compact projective planes. Berlin 1995.Google Scholar
  5. [5]
    G. F. Steinke, Topological circle geometries. In: Handbook of incidence geometry, F. Buekenhout, eds., 1325–1354. Amsterdam 1995.Google Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  • B. Polster
    • 1
  • N. Rosehr
    • 2
  • G. F. Steinke
    • 3
  1. 1.Department of Pure MathematicsUniversity of AdelaideAdelaideAustralia
  2. 2.Mathematisches SeminarUniversität KielKiel
  3. 3.Department of MathematicsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations