Archiv der Mathematik

, Volume 68, Issue 3, pp 190–201 | Cite as

Poincaré series of Drinfeld type

  • Hans-Georg Rück


Let K be the rational function field \(\mathbb{F}_q (t)\). We construct Poincaré series on the Bruhat-Tits tree of GL2 over K and show that they generate the space of automorphic cusp forms of Drinfeld type.

Mathematics Subject Classification (1991)

11 R 58 11 F 99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.-U. Gekeler, Improper Eisenstein series on Bruhat-Tits trees. Manuscripta Math. 86, 367–391 (1995).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    E.-U. Gekeler and M. Reversat, Jacobians of Drinfeld modular curves. J. Reine Angew. Math., to appear.Google Scholar
  3. [3]
    B. Gross and D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84, 225–320 (1986).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Oxford 1979.Google Scholar
  5. [5]
    A. Weil, Basic Number Theory. Berlin-Heidelberg-New York 1973.Google Scholar
  6. [6]
    A. Weil, On some exponential sums. Proc. Nat. Acad. Sei. U.S.A. 34, 204–207 (1948).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    K. Williams, The Kloosterman sum revisited. Canad. Math. Bull. 16, 363–365 (1973).MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  • Hans-Georg Rück
    • 1
  1. 1.Institut für Experimentelle MathematikUniversität GH EssenEssen

Personalised recommendations