An isoperimetric inequality for the harmonic mean of the Steklov eigenvalues in hyperbolic space


In this article, we prove an isoperimetric inequality for the harmonic mean of the first \((n-1)\) nonzero Steklov eigenvalues on bounded domains in n-dimensional hyperbolic space. Our approach to prove this result also gives a similar inequality for the first n nonzero Steklov eigenvalues on bounded domains in n-dimensional Euclidean space.

This is a preview of subscription content, access via your institution.


  1. 1.

    Binoy, Santhanam, G.: Sharp upperbound and a comparison theorem for the first nonzero Steklov eigenvalue. J. Ramanujan Math. Soc. 29(2), 133–154 (2014)

  2. 2.

    Brock, F.: An isoperimetric inequality for eigenvalues of the Stekloff problem. Z. Angew. Math. Mech. 81(1), 69–71 (2001)

  3. 3.

    Colbois, B., Girouard, A., Gittins, K.: Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. J. Geom. Anal. 29(2), 1811–1834 (2019)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Girouard, A., Laugesen, R.S., Siudeja, B.A.: Steklov eigenvalues and quasiconformal maps of simply connected planar domains. Arch. Ration. Mech. Anal. 219(2), 903–936 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem (survey article). J. Spect. Theory 7(2), 321–359 (2017)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Hersch, J., Payne, L.E.: Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff’s type. Z. Angew. Math. Phys. 19(5), 802–817 (1968)

  7. 7.

    Provenzano, L., Stubbe, J.: Weyl-type bounds for Steklov eigenvalues. J. Spect. Theory 9(1), 349–377 (2019)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Santhanam, G.: A sharp upper bound for the first eigenvalue of the Laplacian of compact hypersurfaces in rank-\(1\) symmetric spaces. Proc. Math. Sci. 117(3), 307–315 (2007)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Verma, S.: Bounds for the Steklov eigenvalues. Arch. Math. (Basel) 111(6), 657–668 (2018)

  10. 10.

    Verma, S., Santhanam, G.: Sharp bounds for Steklov eigenvalues on star-shaped domain. Adv. Pure Appl. Math. 11(2), 47–56 (2020)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Stekloff, M.W.: Les problèmes fondamentaux de la physique mathématique. Ann. Sci. Éc. Norm. Supér. 19, 445–490 (1902)

  12. 12.

    Weinstock, R.: Inequalities for a classical eigenvalue problem. J. Ration. Mech. Anal. 3, 745–753 (1954)

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sheela Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, S. An isoperimetric inequality for the harmonic mean of the Steklov eigenvalues in hyperbolic space. Arch. Math. 116, 193–201 (2021).

Download citation


  • Isoperimetric inequality
  • Steklov eigenvalue problem
  • Exponential map
  • Geodesic normal coordinate system

Mathematics Subject Classification

  • Primary 35P15
  • Secondary 58J50