Pure descent for projectivity of modules


In this note, faithfully flat descent for projectivity is generalized to pure descent for projectivity.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bourbaki, N.: Commutative Algebra. Springer, Hermann (1972)

    Google Scholar 

  2. 2.

    Brewer, J.W., Rutter, E.A.: Descent for flatness. J. Algebra 22, 89–96 (1972)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules, vol. 1, 2nd edn. De Gruyter, Berlin (2012)

    Google Scholar 

  4. 4.

    Gruson, L.: Dimension homologique des modules plats sur un anneau commutatif noethérien, Symposia Mathematica, vol. XI, pp. 243–254. Academic Press, London (1973)

    Google Scholar 

  5. 5.

    Perry, A.: Faithfully flat descent for projectivity of modules. arXiv:1011.0038v1 (2010)

  6. 6.

    Raynaud, M., Gruson, L.: Critère de platitude et de projectivité. Invent. Math. 13, 1–69 (1971)

    MathSciNet  Article  Google Scholar 

Download references


I thank the referee for detailed suggestions improving substantially the exposition and the readability of this note.

Author information



Corresponding author

Correspondence to Gerhard Angermüller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A remark on  [6].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Angermüller, G. Pure descent for projectivity of modules. Arch. Math. 116, 19–22 (2021). https://doi.org/10.1007/s00013-020-01505-9

Download citation


  • Faithfully flat descent
  • Mittag–Leffler module
  • Projective module
  • Pure extension

Mathematics Subject Classification

  • 13B02
  • 13C10
  • 13C11
  • 13C13