Groups whose elements are not conjugate to their powers



We call a finite group irrational if none of its elements is conjugate to a distinct power of itself. We prove that those groups are solvable and describe certain classes of these groups, where the above property is only required for p-elements, for p from a prescribed set of primes.


Rational groups 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Barry and M. Ward, Simple groups contain minimal simple groups, Publ. Mat. 41 (1997), 411–415.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Y. Berkovich, Groups of Prime Power Order. Vol. 1, de Gruyter Expositions in Mathematics, Vol. 46, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.Google Scholar
  3. 3.
    R. Carter and P. Fong, The Sylow \(2\)-subgroups of the finite classical groups, J. Algebra 1 (1964), 139–151.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M. Collins, The characterisation of the unitary groups \(U_3(2^n)\) by their Sylow \(2\)-subgroups, Bull. Lond. Math. Soc. 4 (1972), 49–53.CrossRefMATHGoogle Scholar
  5. 5.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of Finite Groups, Oxford University Press, Eynsham, 1985.MATHGoogle Scholar
  6. 6.
    S. Dolfi, G. Malle, and G. Navarro, The finite groups with no real p-elements, Israel J. Math. 192 (2012), 831–840.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    S. Dolfi, G. Navarro, and P. H. Tiep, Primes dividing the degrees of the real characters, Math. Z. 259 (2008), 755–774.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.8.8; 2017, (
  9. 9.
    D. Gorenstein, Finite Groups, Harper & Row Publishers, New York, 1968.MATHGoogle Scholar
  10. 10.
    B. Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, Vol. 134, Springer-Verlag, Berlin, 1967.Google Scholar
  11. 11.
    G. Malle, The maximal subgroups of \({}^2F_4(q^2)\), J. Algebra 139 (1991), 52–69.MathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Navarro, Problems on characters and Sylow subgroups, In: Finite Groups 2003, 275–281, Walter de Gruyter, Berlin, 2004.Google Scholar
  13. 13.
    B. Sambale, Blocks of Finite Groups and Their Invariants, Lecture Notes in Mathematics, Vol. 2127, Springer, Cham, 2014.Google Scholar
  14. 14.
    M. Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105–145.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    J. H. Walter, The characterization of finite groups with abelian Sylow \(2\)-subgroups, Ann. of Math. (2) 89 (1969), 405–514.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    D. L. Winter, The automorphism group of an extraspecial \(p\)-group, Rocky Mountain J. Math. 2 (1972), 159–168.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vakgroep WiskundeVrije Universiteit BrusselBrusselsBelgium
  2. 2.Fachbereich MathematikTU KaiserslauternKaiserslauternGermany

Personalised recommendations