Archiv der Mathematik

, Volume 108, Issue 1, pp 55–64 | Cite as

Ideals of subseries convergence and F-spaces

  • Lech Drewnowski
  • Iwo Labuda


Let X be an F-space and \({\boldsymbol x=(x_n)}\) be a sequence of vectors in X. Ideals \({\mathcal{C}(\boldsymbol x)}\) of subseries convergence are considered. In particular, we show that a characterization of the class of Banach spaces not containing c 0 obtained by using the ideals \({\mathcal{C}(\boldsymbol x)}\) breaks down in every Fréchet space not isomorphic to a Banach space. On the other hand, the result can be extended to some F-spaces via the definition of a new class of F-spaces satisfying a stronger version of the condition (O) of Orlicz. A theorem discriminating between the finite and infinite dimensional case is obtained about the family \({\mathcal{C}(X)}\) of all ideals associated with the F-space X.


F-spaces Subseries convergence Unconditional convergence Ideal of sets \({F_{\sigma}}\) set \({F_{{\sigma}\delta}}\) set 

Mathematics Subject Classification

40A05 46A04 46A16 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auerbach H.: Über die Vorzeichenverteilung in unendlichen Reihen. Studia Math. 2, 228–230 (1930)MATHGoogle Scholar
  2. 2.
    S. Banach, Théorie des opérations linéaires, Monografje Matematyczne, Warszawa, 1932.Google Scholar
  3. 3.
    Borodulin-Nadzieja P., Farkas B., Plebanek G.: Representations of ideals in Polish groups and Banach spaces. J. Symb. Logic 80, 1268–1289 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer Verlag, New York, 1984.Google Scholar
  5. 5.
    Drewnowski L.: On subseries convergence in some function spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 22, 797–803 (1974)MathSciNetMATHGoogle Scholar
  6. 6.
    Drewnowski L., Labuda I.: Vector series whose lacunary subseries converge. Studia Math. 138, 53–80 (2000)MathSciNetMATHGoogle Scholar
  7. 7.
    Drewnowski L., Labuda I.: Ideals of subseries convergence and copies of c 0 in Banach spaces. Oper. Theory Adv. Appl. 201, 199–204 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Drewnowski L., Labuda I.: Bartle-Dunford-Schwartz Integration. J. Math. Anal. Appl. 401, 620–640 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dvoretzky A.: On series in linear topological spaces. Israel J. Math. 1, 37–47 (1963)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), xvi+177 pp.Google Scholar
  11. 11.
    Jarchow H., Locally Convex Spaces. Teubner Verlag, Stuttgart (1981)CrossRefMATHGoogle Scholar
  12. 12.
    Labuda I.: Denumerability conditions and Orlicz-Pettis type theorems. Comment. Math. 18, 45–49 (1974)MathSciNetMATHGoogle Scholar
  13. 13.
    I. Labuda, Spaces of measurable functions, Special issue dedicated to Władysław Orlicz on the occasion of his seventy-fifth birthday, Comment. Math. Special Issue 2 (1979), 217–249.Google Scholar
  14. 14.
    Labuda I, \({L^{1}(\mu)}\) for vector-valued measure \({{\mu}}\). Positivity 14 (2010), 801–813Google Scholar
  15. 15.
    Rolewicz S.: Metric Linear Spaces. Polish Scientific Publishers, Warszawa (1972)MATHGoogle Scholar
  16. 16.
    S. Rolewicz, Metric Linear Spaces, D. Reidel Publishing Company Dodrecht/Boston/Lancaster and PWN–Polish Scientific Publishers, Warszawa, 1985.Google Scholar
  17. 17.
    Solecki S.: Analytic ideals and their applications. Ann. Pure Appl. Logic 99, 51–72 (1999)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Solecki S., Todorcevic S.: Avoiding families and Tukey functions on the nowhere dense ideal. J. Inst. Math. Jussieu 10, 405–435 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceA. Mickiewicz UniversityPoznańPoland
  2. 2.Department of MathematicsThe University of MississippiOxfordUSA

Personalised recommendations