Advertisement

Archiv der Mathematik

, Volume 107, Issue 3, pp 201–211 | Cite as

Upper bounds of homological invariants of \({FI_G}\)-modules

  • Liping Li
Article

Abstract

In this paper we describe upper bounds for a few homological invariants of \({\mathscr{FI}_G}\)-modules \({V}\). These upper bounds are expressed in terms of the generating degree and torsion degree, which measure the “top” and “socle” of \({V}\) under actions of non-invertible morphisms in the category, respectively.

Keywords

FI-modules Homological degrees Castelnuovo–Mumford regularity Projective dimensions Injective dimensions 

Mathematics Subject Classification

16E10 16E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Church and J. Ellenberg, Homology of FI-modules, arXiv:1506.01022.
  2. 2.
    Church T., Ellenberg J., Farb B.: FI-modules and stability for representations of symmetric groups. Duke Math J. 164, 1833–1910 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Church T., Ellenberg J., Farb B., Nagpal R.: FI-modules over Noetherian rings. Geom. Topol. 18, 2951–2984 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Gan W. L., Li L.: Coinduction functor in representation stability theory, J. Lond. Math. Soc. 92 (2015), 689–711.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    L. Li, Homological degrees of representations of categories with shift functors, arXiv:1507.08023.
  6. 6.
    L. Li and N. Yu, Filtrations and homological degrees of FI-modules, arXiv:1511.02977.
  7. 7.
    R. Nagpal, FI-modules and the cohomology of modular representations of symmetric groups, arXiv:1505.04294.
  8. 8.
    E. Ramos, Homological invariants of FI-modules and \({FI_G}\)-modules, arXiv:1511.03964.
  9. 9.
    S. Sam and A. Snowden, GL-equivariant modules over polynomial rings in infinitely many variables, Trans. Amer. Math. Soc. 368 (2016), 1097–1158.Google Scholar
  10. 10.
    S. Sam and A. Snowden, Gröbner methods for representations of combinatorial categories, to appear in J. Amer. Math. Soc., arXiv:1409.1670.

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.College of Mathematics and Computer Science, Performance Computing and Stochastic Information Processing (Ministry of Education)Hunan Normal UniversityChangshaChina

Personalised recommendations