Archiv der Mathematik

, Volume 106, Issue 4, pp 355–362 | Cite as

Gonality and Clifford index of curves on elliptic K3 surfaces with Picard number two



We compute the Clifford index of all curves on K3 surfaces with Picard group isomorphic to U(m).


K3 surface Clifford index Lattices 

Mathematics Subject Classification

14H51 14J28 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Arbarello, M. Cornalba, P. Griffiths, and J.D. Harris, Geometry of Algebraic Curves, Number v. 1 in Grundlehren der mathematischen Wissenschaften, Springer New York, (2010).Google Scholar
  2. 2.
    Artebani M., Sarti A.: Non-symplectic automorphisms of order 3 on K3 surfaces. Math. Ann. 342, 903–921 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Artebani M., Sarti A., Taki S.: K3 surfaces with non-symplectic automorphisms of prime order. Math. Z. 268, 507–533 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    W. Barth, K. Hulek, C. Peters, and A. van de Ven, Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge / A Series of Modern Surveys in Mathematics, Springer Berlin Heidelberg, (2014).Google Scholar
  5. 5.
    Ciliberto C., Pareschi G.: Pencils of minimal degree on curves on a K3 surface. J. Reine Angew. Math. 460, 15–36 (1995)MathSciNetMATHGoogle Scholar
  6. 6.
    I.V. Dolgachev and S. Kondo, Moduli of K3 Surfaces and Complex Ball Quotients, In Rolf-Peter Holzapfel, A.Muhammed Uluda, and Masaaki Yoshida (editors), Arithmetic and Geometry Around Hypergeometric Functions, volume 260 of Progress in Mathematics, pp. 43–100, Birkhäuser Basel, (2007).Google Scholar
  7. 7.
    R. Donagi and D.R. Morrison, Linear systems on K3-sections. J. Differential Geom. 29, 49–64 (1989)MathSciNetMATHGoogle Scholar
  8. 8.
    Eisenbud D., Lange H., Martens G., Schreyer F.: The Clifford dimension of a projective curve. Compositio Mathematica, 72, 173–204 (1989)MathSciNetMATHGoogle Scholar
  9. 9.
    Green M., Lazarsfeld R.: Special divisors on curves on a K3 surface. Invent. Math. 89, 357–370 (1987)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    T. Johnsen and A. L. Knutsen, K3 Projective Models in Scrolls, Lecture Notes in Mathematics, no. 1842, Springer-Verlag, Berlin, 2004.Google Scholar
  11. 11.
    Knutsen A.L.: On kth-order embeddings of K3 surfaces and Enriques surfaces. Manuscripta Math. 104, 211–237 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Knutsen A.L.: On two conjectures for curves on K3 surfaces, Internat. J. Math. 20, 1547–1560 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Pyatetskij-Shapiro I.I., Shafarevich I.R.: Torelli's theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat. 35, 530–572 (1971)MathSciNetMATHGoogle Scholar
  14. 14.
    Saint-Donat B.: Projective models of K3 surfaces. Amer. J. Math. 96, 602–639 (1974)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Taki S.: Classification of non-symplectic automorphisms of order 3 on K3 surfaces. Math. Nachr. 284, 124–135 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    K. Watanabe, The Clifford index of line bundles on a 2-elementary K3 surface given by a double cover of a del Pezzo surface, Geom. Dedicata (2014), 1–15.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Université de PoitiersPoitiersFrance

Personalised recommendations