Archiv der Mathematik

, Volume 106, Issue 3, pp 295–299 | Cite as

Krull orders in nilpotent groups: corrigendum and addendum

  • Eric Jespers
  • Jan Okniński


Noncommutative Krull domains that are determined by submonoids of torsion-free nilpotent groups are investigated. A complete description is given in case the group G is nilpotent of class two and its abelianisation is torsion-free and satisfies the ascending chain condition on cyclic subgroups. The result corrects and extends an earlier result by the authors to the case that G is not necessarily finitely generated and yields a class of non-Noetherian algebras that have a nice arithmetical structure.


Krull order Semigroup algebra Nilpotent group 

Mathematics Subject Classification

Primary 16S36 16U30 20M13 Secondary 16H99 20F18 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Akalan and H. Marubayashi, Multiplicative ideal theory in non-commutative rings, in: Multiplicative Ideal Theory and Factorization Theory, Scott T. Chapman, M. Fontana, A. Geroldinger, B. Olberding, eds., Springer, 2016, to appear.Google Scholar
  2. 2.
    Baeth N.R., Smertnig D.: Factorization theory: from commutative to noncommutative settings. J. Algebra 441, 475–551 (2015)CrossRefMathSciNetGoogle Scholar
  3. 3.
    L.G. Chouinard II, Krull semigroups and divisor class groups, Canad. J. Math. 23 (1981), 1459–1468.Google Scholar
  4. 4.
    Geroldinger A.: Non-commutative Krull monoids: a divisor theoretic approach and their arithmetic. Osaka J. Math. 50, 503–539 (2013)MathSciNetMATHGoogle Scholar
  5. 5.
    A. Geroldinger and F. Halter-Koch, Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics 278, Chapman & Hall/CRC, Boca Raton, FL, 2006.Google Scholar
  6. 6.
    Jespers E.: Semigroup algebras and Noetherian maximal orders: a survey. Acta Appl. Math. 108, 83–99 (2009)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Jespers E., Okniński J.: Krull orders in nilpotent groups. Arch. Math. 103, 27–37 (2014)CrossRefMATHGoogle Scholar
  8. 8.
    E. Jespers and J. Okniński, Noetherian semigroup algebras, Algebras and Applications 7, Springer, Dordrecht, 2007.Google Scholar
  9. 9.
    Jespers E., Okniński J.: Semigroup algebras and Noetherian maximal orders. J. Algebra 238, 590–622 (2001)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Jespers E., Okniński J.: Semigroup algebras and maximal orders. Canad. Math. Bull. 42, 298–306 (1999)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Jespers E., Wauters P.: A general notion of noncommutative Krull rings. J. Algebra 112, 388–415 (1988)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Matsuda R.: On algebraic properties of infinite group rings. Bull. Fac. Sci. Ibaraki Univ. 7, 29–37 (1975)CrossRefMATHGoogle Scholar
  13. 13.
    Rogalski D., Sierra S.J.: Some noncommutative projective surfaces of GK-dimension 4. Compos. Math. 148, 1195–1237 (2012)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Yekutieli A., Zhang J.J.: Homological transcendence degree, Proc. London Math. Soc. 93, 105–137 (2006)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsVrije Universiteit BrusselBrusselBelgium
  2. 2.Institute of MathematicsUniversity of WarsawWarsawPoland

Personalised recommendations