Advertisement

Archiv der Mathematik

, Volume 105, Issue 6, pp 519–528 | Cite as

On M-groups with Sylow towers

  • Xuewu Chang
  • Huijuan Zheng
  • Ping Jin
Article

Abstract

Using the theory of linear limits due to Dade and Loukaki, we present a useful criterion for a class of finite solvable groups (including groups with Sylow towers) to be M-groups. As applications, we determine the monomiality of normal subgroups and Hall subgroups of such groups.

Keywords

M-group Sylow tower Monomial character Linear limit 

Mathematics Subject Classification

20C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dade E. C.: Normal subgroups of M-groups need not be M-groups. Math. Z. 133, 313–317 (1973)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. C. Dade, and M. Loukaki, Linear limits of irreducible characters, arXiv:math/0412385, 2004
  3. 3.
    Dornhoff L.: M-groups and 2-groups. Math. Z. 100, 226–256 (1967)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Fukushima H.: Hall subgroups of M-groups need not be M-groups. Proc. AMS. 133, 671–675 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gunter E. L.: M-groups with Sylow towers. Proc. AMS. 105, 555–563 (1989)MATHMathSciNetGoogle Scholar
  6. 6.
    Isaacs I. M.: Character Theory of Finite Groups. Academic Press, New York (1976)MATHGoogle Scholar
  7. 7.
    Isaacs I. M.: Characters of subnormal subgroups of M-groups. Arch. Math. 42, 509–515 (1984)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Lewis M. L.: M-groups of order p a q b: A theorem of Loukaki. J. Alg. Appl. 5, 465–503 (2006)MATHCrossRefGoogle Scholar
  9. 9.
    M. Loukaki, Normal subgroups of odd order monomial p a q b-groups, Thesis, University of Illinois at Urbana-Champaign, 2001Google Scholar
  10. 10.
    Loukaki M.: Extendible characters and monomial groups of odd order. J. Algebra 299, 778–819 (2006)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Price D. T.: Character ramification and M-groups. Math. Z. 130, 325–337 (1973)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    van der Waall R. W.: On the embedding of minimal non-M-groups. Indag. Math. 36, 157–167 (1974)CrossRefGoogle Scholar
  13. 13.
    Winter D. L., Murphy P. F.: Groups all of whose subgroups are M-groups. Math. Z. 124, 73–78 (1972)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.School of Mathematical SciencesShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations