Skip to main content
Log in

Transcendental values of the incomplete gamma function and related questions

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

For s, x > 0, the lower incomplete gamma function is defined to be the integral \({\gamma(s,x):=\int_{0}^{x} t^{s} e^{-t} \frac{dt}{t}}\), which can be continued analytically to an open subset of \({\mathbb{C}^{2}}\). Here in this article, we study the transcendence of special values of the lower incomplete gamma function, by means of transcendence of certain infinite series. These series are variants of series which are of great interest in number theory. However, these series are also of independent interest and can be studied in the context of the theory of E-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhikari S.D., Saradha N., Shorey T.N., Tijdeman R.: Transcendental infinite sums. Indag. Math. (N.S.) 12, 1–14 (2001)

    Article  MathSciNet  Google Scholar 

  2. Baker A., Birch B., Wirsing E.: On a problem of Chowla. J. Number Theory 5, 224–236 (1973)

    Article  MathSciNet  Google Scholar 

  3. F. Beukers, A refined version of the Siegel-Shidlovskii theorem, Ann. of Math. (2) 163 (2006), 369–379.

  4. Bruinier J.H., Funke J.: On two geometric theta lifts. Duke Math J. 125, 45–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. H. Bruinier, K. Ono and R. C. Rhoades, Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues, Math. Ann. 342 (2008), 673–693.

  6. I. I. Belogrivov, Transcendentality and algebraic independence of values of certain E-functions (Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh., 22 (1967), 55–62.

  7. I. I. Belogrivov, The transcendence and algebraic independence of the values of Kummer functions (Russian), Sibirsk. Mat. Zh., 12 (1971), 961–982.

  8. P. Grinspan, Measures of simultaneous approximation for quasi-periods of abelian varieties, J. Number Theory 94 (2002), 136–176.

  9. Kh. Hessami Pilehrood and T. Hessami Pilehrood, Infinite sums as linear combinations of polygamma functions, Acta Arith. 130 (2007), 231–254.

  10. Mahler K.: Applications of a theorem by A. B. Shidlovski, Proc. Roy. Soc. Ser. A 305, 149–173 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Ram Murty and N. Saradha, Transcendental values of the digamma function, J. Number Theory 125 (2007), 298–318.

  12. M. Ram Murty and C. Weatherby, Special values of the Gamma function at CM points, Ramanujan J., January 2014.

  13. R. Narasimhan, Several complex variables, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, Ill.-London, 1971.

  14. Yu. V. Nesterenko, Algebraic independence, Narosa Publishing House, New Delhi, 2009.

  15. V. A. Oleinikov, The transcendence and algebraic independence of the values of certain E-functions (Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh., 1962 (1962), 34–38.

  16. K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Current developments in mathematics, 2008, 347-454, Int. Press, Somerville, MA, 2009.

  17. A. B. Shidlovskii, Transcendentality and algebraic independence of the values of certain functions, Trudy Moskov. Mat. Obshch. 8 (1959), 283–320.

  18. A. B. Shidlovskii, Transcendental Numbers, de Gruyter Studies in Mathematics 12, Walter de Gruyter & Co., Berlin, 1989.

  19. C. L. Siegel, Ub̈er einige Andwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., Phys.-Math. Kl. 1 (1929), 1–70.

  20. C. L. Siegel, Transcendental Numbers, Annals of Mathematics Studies, no. 16, Princeton University Press, Princeton, 1949.

  21. C. Weatherby, Transcendence of infinite sums of simple functions, Acta Arith. 142 (2010), 85–102.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ram Murty.

Additional information

M. Ram Murty’s research was partially supported by an NSERC Discovery grant. Ekata Saha’s research was supported by an IMSc PhD Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murty, M.R., Saha, E. Transcendental values of the incomplete gamma function and related questions. Arch. Math. 105, 271–283 (2015). https://doi.org/10.1007/s00013-015-0800-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-015-0800-3

Mathematics Subject Classification

Keywords

Navigation