Archiv der Mathematik

, Volume 105, Issue 2, pp 129–137 | Cite as

Sharpening of theorems of Vahlen and Hurwitz and approximation properties of the golden ratio



We improve the well-known theorems of Hurwitz and Vahlen from Diophantine approximation theory and give the proof that the numbers golden ratio and reciprocal one plus golden ratio have some exeptional properties in approximation of irrational real numbers by rationals.

Mathematics Subject Classification

Primary 11J82 Secondary 11A55 


Continued fraction Approximation Golden ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benito M., Escribano J.J.: An easy proof of Hurwitz theorem. Amer. Math. Monthly 109, 916–918 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J. M. Borwein and P. B. Borwein Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, John Wiley & Sons, New York, 1987.Google Scholar
  3. 3.
    J. W. S. Cassels An introduction to Diophantine approximations, Cambridge Tracts in Mathematics and Mathematical Physics, no. 45, Cambridge University Press, 1957.Google Scholar
  4. 4.
    Cohn J.H.E.: Hurwitz’ theorem. Proc. Amer. Math. Soc. 38, 436 (1973)MathSciNetMATHGoogle Scholar
  5. 5.
    L. Euler De fractionibus continuis, C. Pet. 9 (1737).Google Scholar
  6. 6.
    L. Euler Introductio in analysin infinitorum I, (1748).Google Scholar
  7. 7.
    N. I. Fel’dman and Yu. V. Nesterenko Transcendental Numbers, Encyclopaedia of Mathematical Sciences, vol. 44: Number Theory IV, A. N. Parshin and I. R. Shafarevich, eds., Springer-Verlag, New York, 1998.Google Scholar
  8. 8.
    L. R. Ford A geometrical proof of theorem of Hurwitz, Proc. Edinburgh Mat. Soc. 35 (1916/1917), 59–65.Google Scholar
  9. 9.
    G. FrobeniusÜber die Markoffschen Zahlen, Preuss. Akad. Wiss. Sitzungsberichts (1913), 458–487.Google Scholar
  10. 10.
    Fuchs M.: On metric Diophantine approximation in the field of formal Laurent series. Finite Fields Appl. 8, 343–368 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    G. H. Hardy and E. M. Wright An introduction to the theory of numbers, Sixth edition. Revised by D. R. Heath-Brown and J. H. Silverman. With a foreword by Andrew Wiles. Oxford University Press, Oxford, 2008.Google Scholar
  12. 12.
    D. Hensley Continued fractions, Word Scientific Publishing Co. Lte. Ptd., Hackensack, NJ, 2006.Google Scholar
  13. 13.
    Hurwitz A.: Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche. (German) MathAnn. 39, 279–284 (1891)MathSciNetMATHGoogle Scholar
  14. 14.
    W. B. Jones and W. J. Thron Continued fractions. Analytic theory and applications. With a foreword by Felix E. Browder. With an Introduction by Peter Henrici, Encyclopedia of Mathematics and its applications, 11, Adisson Wesley Publishing Co., Reading, Mass., 1980.Google Scholar
  15. 15.
    O. Karpenkov Geometry of continued fractions, Algorithms and Computation in Mathematics, 26. Springer, Heidelberg, 2013.Google Scholar
  16. 16.
    A. Ya. Khinchin Continued fractions, The University of Chicago Press, Chicago, III-London, 1964.Google Scholar
  17. 17.
    J. L. Lagrange Additions au mémoire sur la resólution des équations numériques, Mém. Berl. 24, année 1770 =  Oeuvres II.Google Scholar
  18. 18.
    Markoff A.A.: Sur les formes quadratiques binaires indéfinies. Math. Ann. 15, 381–407 (1879)CrossRefMATHGoogle Scholar
  19. 19.
    Markoff A.A.: Sur les formes quadratiques binaires indéfinies II. Math. Ann. 17, 379–400 (1880)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Nathanson M.B.: Approximation by continued fractions. Proc Amer. Math. Soc. 45, 323–324 (1974)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nicholls P.J.: Diophantine approximation via the modular group. J. London Math. Soc. (2) 17, 11–17 (1978)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    O. Perron Die Lehre von den Kettenbrüchen, Matematischen Wissenschaften 26, Verlag, Teubner, (1913).Google Scholar
  23. 23.
    K. H. Rosen, Elementary number theory and its applications, 5th edition, Addison Wesley, 2005Google Scholar
  24. 24.
    W. M. Schmidt Diophantine approximation, Lecture Notes in Mathematics, 785, Springer, Berlin, 1980.Google Scholar
  25. 25.
    K. Th. VahlenÜber Näherungswerte und Kettenbrüche, J. Reine Angew. Math. 115 (1895), 221–233.Google Scholar
  26. 26.
    H. S. Wall Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., New York, N.Y., 1948.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Division of UO, Department of Mathematics, Centre of Excellence IT4Innovation, Institute for Research and Applications of Fuzzy ModelingUniversity of OstravaOstrava 1Czech Republic

Personalised recommendations