Advertisement

Archiv der Mathematik

, Volume 104, Issue 4, pp 301–309 | Cite as

Invariable generation of permutation groups

  • Eloisa Detomi
  • Andrea Lucchini
Article

Abstract

Let G be a finite permutation group of degree n, and let d = 2 if G = Sym(3), d = [n/2] otherwise. We prove that there exist d elements g 1, . . . , g d in G with the property that \({G=\langle g_1^{x_1},\ldots,g_d^{x_d}\rangle}\) for every choice of \({(x_1,\ldots,x_d)\in G^d}\).

Keywords

Invariable generation Finite permutation groups 

Mathematics Subject Classification

20B05 20F05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cameron P., Solomon R., Turull A.: Chains of subgroups in symmetric groups. J. Algebra 127, 340–352 (1989)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Detomi E., Lucchini A: Invariable generation with elements of coprime prime-power order, J. Algebra 423, 683–701 (2015)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    E. Detomi and A. Lucchini, Invariable generation of prosoluble groups, to appear on Israel J. Math., arXiv:1410.5271
  4. 4.
    J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Math. 105 (1992), 25–39.Google Scholar
  5. 5.
    J. Fulman and R. Guralnick, Derangements in simple and primitive groups, in: A.A. Ivanov, M.W. Liebeck, J. Saxl (Eds.), Groups, Combinatorics and Geometry, Durham 2001, World Sci. Publ., River Edge, NJ, 2003, pp. 99–121.Google Scholar
  6. 6.
    R. Guralnick and G. Malle, Simple groups admit Beauville structures, J. Lond. Math. Soc. (2) 85 (2012), 694–721.Google Scholar
  7. 7.
    W. M. Kantor, A. Lubotzky, and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, J. Algebra 348 (2011), 302–314.Google Scholar
  8. 8.
    W.M. Kantor, A. Lubotzky, and A. Shalev, Invariable generation of infinite groups, J. Algebra 421 (2015), 296310.Google Scholar
  9. 9.
    L. G. Kovács, Primitive subgroups of wreath products in product action, Proc. London Math. Soc. (3) 58 (1989), 306–322.Google Scholar
  10. 10.
    T. Luczak and L. Pyber, On random generation of the symmetric group, Combin. Probab. Comput. 2 (1993), 505–512.Google Scholar
  11. 11.
    A. McIver and P. Neumann, Enumerating finite groups. Quart. J. Math. Oxford Ser. (2) 38 (1987), 473–488.Google Scholar
  12. 12.
    N. Menezes, Random generation and chief length of finite groups, PhD Thesis, http://research-repository.st-andrews.ac.uk/handle/10023/3578
  13. 13.
    L. Pyber, Asymptotic results for permutation groups. Groups and computation (New Brunswick, NJ, 1991), 197219, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 11, Amer. Math. Soc., Providence, RI, 1993.Google Scholar
  14. 14.
    A. Shalev, A theorem on random matrices and some applications, J. Algebra 199 (1998), 124–141.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations