Archiv der Mathematik

, Volume 103, Issue 3, pp 255–266 | Cite as

Globally generated vector bundles and the Weak Lefschetz property

  • Rosa M. Miró-Roig


Artinian ideals \({I\subset R: =k[x_1,..., x_n]}\) generated by m general forms of given degree have attracted a great deal of attention recently, and one of the main challenging problems is to determine its Hilbert function. The Hilbert function of R/I was conjectured by Fröberg, and it is well known that the Weak Lefschetz property imposes severe constraints on the possible Hilbert functions. In this short note, we will focus our attention on Artinian ideals \({I \subset R}\) generated by m general forms all of the same degree d and we analyze whether the Weak Lefschetz property is satisfied. More precisely, for m = n or n ≤ 4 the Weak Lefschetz property holds, and our goal will be to prove that for any integers n and d, the Weak Lefschetz property also holds provided m falls into the interval \({[\frac{1}{d+1} \alpha_{n,d}, \alpha_{n,d}]}\) where \({\alpha_{n,d}={n+d-1\choose d}}\).


Weak Lefschetz property Artinian algebras Vector bundles 

Mathematics Subject Classification

Primary 13D40 Secondary 14F05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anick D.: Thin algebras of embedding dimension three, J. Algebra 100, 235–259 (1986)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brenner H., Kaid A.: Syzygy bundles on \({\mathbb{P}^{2}}\) and the weak Lefschetz property. Illinois J. Math. 51, 1299–1308 (2007)MathSciNetMATHGoogle Scholar
  3. 3.
    Cook D. II, Nagel U.: The weak Lefschetz property, monomial ideals, and lozenges, . Illinois J. Math. 55, 377–395 (2011)MathSciNetMATHGoogle Scholar
  4. 4.
    Ellia P., Hirschowitz A.: Génération de certain fibrés sur les spaces projectifs et application,. J. Alg. Geom. 1, 531–547 (1992)MathSciNetMATHGoogle Scholar
  5. 5.
    Franco D.: On the Generation of Certain Bundles of the Projective Space. Geometricae Dedicata 81, 31–52 (2000)MathSciNetGoogle Scholar
  6. 6.
    Fröberg R.: An inequality for Hilbert series of graded algebras, Math. Scand. 56, 117–144 (1985)MATHGoogle Scholar
  7. 7.
    Harbourne B., Schenck H., Seceleanu A.: Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property,. J Lond. Math. Soc. 2(84), 712–730 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Harima T.: Characterization of Hilbert functions of Gorenstein Artin algebras with the weak Stanley property,. Proc. Amer. Math. Soc. 123, 3631–3638 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    T. Harima, et al., Lefschetz properties, preprint (2012).Google Scholar
  10. 10.
    T. Harima, et al., The Weak and Strong Lefschetz Properties for Artinian K-Algebras, J. Algebra 262 (2003), 99–126.Google Scholar
  11. 11.
    Hochster M., Laksov D.: The linear syzygies of generic forms. Comm. Algebra 15, 227–239 (1987)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Li J., Zanello F.: Monomial complete intersections, the weak Lefschetz property and plane partitions. Discrete Math. 310, 3558–3570 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mezzetti E., Miró-Roig R.M., Ottaviani G.: Laplace Equations and the Weak Lefschetz Property. Canadian Journal of Mathematics 65, 634–654 (2013)CrossRefMATHGoogle Scholar
  14. 14.
    Migliore J., Miró-Roig R.M.: Ideals of general forms and the ubiquity of the Weak Lefschetz property. J. Pure Appl. Algebra 182, 79–107 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Migliore J., Miró-Roig R.M., Nagel U.: On the Weak Lefschetz Property for Powers of Linear Forms. Algebra and Number Theory 6, 487–526 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Migliore J., Miró-Roig R., Nagel U.: Monomial ideals, almost complete intersections, and the Weak Lefschetz property. Trans. Amer. Math. Soc. 363, 229–257 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R. M. Miró-Roig, Ordinary curves, webs and the ubiquity of the Weak Lefschetz Property, Algebras and Representation Theory (2014) to appear. doi: 10.1007/s10468-013-9460-9.
  18. 18.
    Stanley R.: Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1, 168–184 (1980)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Stanley R.: The number of faces of a simplicial convex polytope. Adv. Math. 35, 236–238 (1980)CrossRefMATHGoogle Scholar
  20. 20.
    J. Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, Commutative Algebra and Combinatorics, Advanced Studies in Pure Math. 11, Kinokuniya Co. North Holland, Amsterdam (1987), 303–312.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department d’Àlgebra i GeometriaFacultat de MatemàtiquesBarcelonaSpain

Personalised recommendations