Archiv der Mathematik

, Volume 103, Issue 3, pp 255–266

# Globally generated vector bundles and the Weak Lefschetz property

Article

## Abstract

Artinian ideals $${I\subset R: =k[x_1,..., x_n]}$$ generated by m general forms of given degree have attracted a great deal of attention recently, and one of the main challenging problems is to determine its Hilbert function. The Hilbert function of R/I was conjectured by Fröberg, and it is well known that the Weak Lefschetz property imposes severe constraints on the possible Hilbert functions. In this short note, we will focus our attention on Artinian ideals $${I \subset R}$$ generated by m general forms all of the same degree d and we analyze whether the Weak Lefschetz property is satisfied. More precisely, for m = n or n ≤ 4 the Weak Lefschetz property holds, and our goal will be to prove that for any integers n and d, the Weak Lefschetz property also holds provided m falls into the interval $${[\frac{1}{d+1} \alpha_{n,d}, \alpha_{n,d}]}$$ where $${\alpha_{n,d}={n+d-1\choose d}}$$.

## Keywords

Weak Lefschetz property Artinian algebras Vector bundles

## Mathematics Subject Classification

Primary 13D40 Secondary 14F05

## References

1. 1.
Anick D.: Thin algebras of embedding dimension three, J. Algebra 100, 235–259 (1986)
2. 2.
Brenner H., Kaid A.: Syzygy bundles on $${\mathbb{P}^{2}}$$ and the weak Lefschetz property. Illinois J. Math. 51, 1299–1308 (2007)
3. 3.
Cook D. II, Nagel U.: The weak Lefschetz property, monomial ideals, and lozenges, . Illinois J. Math. 55, 377–395 (2011)
4. 4.
Ellia P., Hirschowitz A.: Génération de certain fibrés sur les spaces projectifs et application,. J. Alg. Geom. 1, 531–547 (1992)
5. 5.
Franco D.: On the Generation of Certain Bundles of the Projective Space. Geometricae Dedicata 81, 31–52 (2000)
6. 6.
Fröberg R.: An inequality for Hilbert series of graded algebras, Math. Scand. 56, 117–144 (1985)
7. 7.
Harbourne B., Schenck H., Seceleanu A.: Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property,. J Lond. Math. Soc. 2(84), 712–730 (2011)
8. 8.
Harima T.: Characterization of Hilbert functions of Gorenstein Artin algebras with the weak Stanley property,. Proc. Amer. Math. Soc. 123, 3631–3638 (1995)
9. 9.
T. Harima, et al., Lefschetz properties, preprint (2012).Google Scholar
10. 10.
T. Harima, et al., The Weak and Strong Lefschetz Properties for Artinian K-Algebras, J. Algebra 262 (2003), 99–126.Google Scholar
11. 11.
Hochster M., Laksov D.: The linear syzygies of generic forms. Comm. Algebra 15, 227–239 (1987)
12. 12.
Li J., Zanello F.: Monomial complete intersections, the weak Lefschetz property and plane partitions. Discrete Math. 310, 3558–3570 (2010)
13. 13.
Mezzetti E., Miró-Roig R.M., Ottaviani G.: Laplace Equations and the Weak Lefschetz Property. Canadian Journal of Mathematics 65, 634–654 (2013)
14. 14.
Migliore J., Miró-Roig R.M.: Ideals of general forms and the ubiquity of the Weak Lefschetz property. J. Pure Appl. Algebra 182, 79–107 (2003)
15. 15.
Migliore J., Miró-Roig R.M., Nagel U.: On the Weak Lefschetz Property for Powers of Linear Forms. Algebra and Number Theory 6, 487–526 (2012)
16. 16.
Migliore J., Miró-Roig R., Nagel U.: Monomial ideals, almost complete intersections, and the Weak Lefschetz property. Trans. Amer. Math. Soc. 363, 229–257 (2011)
17. 17.
R. M. Miró-Roig, Ordinary curves, webs and the ubiquity of the Weak Lefschetz Property, Algebras and Representation Theory (2014) to appear. doi:.
18. 18.
Stanley R.: Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1, 168–184 (1980)
19. 19.
Stanley R.: The number of faces of a simplicial convex polytope. Adv. Math. 35, 236–238 (1980)
20. 20.
J. Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, Commutative Algebra and Combinatorics, Advanced Studies in Pure Math. 11, Kinokuniya Co. North Holland, Amsterdam (1987), 303–312.Google Scholar